Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change will affect carbon sequestration in oceans, model shows

08.09.2005


An Earth System model developed by researchers at the University of Illinois at Urbana-Champaign indicates that the best location to store carbon dioxide in the deep ocean will change with climate change.



The direct injection of carbon dioxide deep into the ocean has been suggested as one method to help control rising carbon dioxide levels in the atmosphere and mitigate the effects of global warming. But, because the atmosphere interacts with the oceans, the net uptake of carbon dioxide and the oceans’ sequestration capacity could be affected by climate change.

"Through a number of physical and chemical interactive mechanisms, the ocean circulation could change and affect the retention time of carbon dioxide injected into the deep ocean, thereby indirectly altering oceanic carbon storage and atmospheric carbon dioxide concentration," said Atul Jain, a professor of atmospheric sciences. "Where the carbon dioxide is injected turns out to be a very important issue."


Developed by Jain and graduate student Long Cao, the Integrated Science Assessment Model is a coupled climate-ocean-terrestrial biosphere-carbon cycle model that allows extensive exploration of key physical and chemical interactions among individual components of the Earth system, as well as among carbon cycle, climate change and ocean circulation.

"A good understanding of climate change, ocean circulation, the ocean carbon cycle and feedback mechanisms is crucial for a reliable projection of atmospheric carbon dioxide concentration and resultant climate change," Jain said. The model is described in the September issue of the Journal of Geophysical Research -- Oceans.

Using the model, Jain and Cao studied the effectiveness of oceanic carbon sequestration by the direct injection of carbon dioxide at different locations and depths.

They found that climate change has a big impact on the oceans’ ability to store carbon dioxide. The effect was most pronounced in the Atlantic Ocean. The researchers presented their findings in the May issue of the journal Geophysical Research Letters.

"When we ran the model without the climate feedback mechanisms, the Pacific Ocean held more carbon dioxide for a longer time," Cao said. "When we added the feedback mechanisms, however, the retention time in the Atlantic Ocean proved far superior. Injecting carbon dioxide into the Atlantic Ocean would be more effective than injecting it at the same depth in either the Pacific Ocean or the Indian Ocean."

Future climate change could affect both the uptake of carbon dioxide in the ocean basins and the ocean circulation patterns themselves, Jain said. As sea-surface temperatures increase, the density of the water decreases and thus slows the ocean thermohaline circulation, so the ocean’s ability to absorb carbon dioxide also decreases. This leaves more carbon dioxide in the atmosphere, exacerbating the problem.

"At the same time, the reduced ocean circulation will decrease the ocean mixing, which decreases the ventilation to the atmosphere of carbon injected into the deep ocean," Jain said. "Our model results show that this effect is more dramatic in the Atlantic Ocean."

Sequestering carbon in the deep ocean is not a permanent solution for reducing the amount of carbon dioxide in the atmosphere, the researchers report. "Carbon dioxide dumped in the oceans won’t stay there forever," Jain said. "Eventually it will percolate to the surface and into the atmosphere."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>