Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calculations favor reducing atmopshere for early Earth

08.09.2005


Was Miller-Urey experiment correct?



Using primitive meteorites called chondrites as their models, earth and planetary scientists at Washington University in St. Louis have performed outgassing calculations and shown that the early Earth’s atmosphere was a reducing one, chock full of methane, ammonia, hydrogen and water vapor.

In making this discovery Bruce Fegley, Ph.D., Washington University professor of earth and planetary sciences in Arts & Sciences, and Laura Schaefer, laboratory assistant, reinvigorate one of the most famous and controversial theories on the origins of life, the 1953 Miller-Urey experiment, which yielded organic compounds necessary to evolve organisms.


Chondrites are relatively unaltered samples of material from the solar nebula, According to Fegley, who heads the University’s Planetary Chemistry Laboratory, scientists have long believed them to be the building blocks of the planets. However, no one has ever determined what kind of atmosphere a primitive chondritic planet would generate.

"We assume that the planets formed out of chondritic material, and we sectioned up the planet into layers, and we used the composition of the mix of meteorites to calculate the gases that would have evolved from each of those layers," said Schaefer. "We found a very reducing atmosphere for most meteorite mixes, so there is a lot of methane and ammonia."

In a reducing atmosphere, hydrogen is present but oxygen is absent. For the Miller-Urey experiment to work, a reducing atmosphere is a must. An oxidizing atmosphere makes producing organic compounds impossible. Yet, a major contingent of geologists believe that a hydrogen-poor, carbon dioxide -rich atmosphere existed because they use modern volcanic gases as models for the early atmosphere. Volcanic gases are rich in water , carbon dioxide, and sulfur dioxide but contain no ammonia or methane.

"Geologists dispute the Miller-Urey scenario, but what they seem to be forgetting is that when you assemble the Earth out of chondrites, you’ve got slightly different gases being evolved from heating up all these materials that have assembled to form the Earth. Our calculations provide a natural explanation for getting this reducing atmosphere," said Fegley.

Schaefer presented the findings at the annual meeting of the Division of Planetary Sciences of the American Astronomical Society, held Sept. 4-9 in Cambridge, England.

Schaefer and Fegley looked at different types of chondrites that earth and planetary scientists believe were instrumental in making the Earth. They used sophisticated computer codes for chemical equilibrium to figure out what happens when the minerals in the meteorites are heated up and react with each other. For example, when calcium carbonate is heated up and decomposed, it forms carbon dioxide gas.

"Different compounds in the chondritic Earth decompose when they’re heated up, and they release gas that formed the earliest Earth atmosphere," Fegley said.

The Miller-Urey experiment featured an apparatus into which was placed a reducing gas atmosphere thought to exist on the early Earth. The mix was heated up and given an electrical charge and simple organic molecules were formed. While the experiment has been debated from the start, no one had done calculations to predict the early Earth atmosphere.

"I think these computations hadn’t been done before because they’re very difficult; we use a special code" said Fegley, whose work with Schaefer on the outgassing of Io, Jupiter’s largest moon and the most volcanic body in the solar system, served as inspiration for the present early Earth atmosphere work.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>