Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA’s Deep Impact Team Releases First Snapshot of Comet Tempel 1

07.09.2005


The surface of comet Tempel 1, hit by a NASA space probe during a spectacular July 4 experiment, bears evidence of impact craters, suggesting that the comet has collided with asteroids or other space travelers in its journeys around the Sun.



Several dozen circular features that appear to be impact craters, ranging from 40 to 400 meters across, were spotted on Tempel 1 during the Deep Impact mission, according to first results from the mission team published by Science and released at the annual meeting of the Division of Planetary Sciences of the American Astronomical Society held at the University of Cambridge.

Tempel 1 is the first comet to show evidence for impact craters. In fact, differences in the comet’s topography and shape compared with Borrelly and Wild 2 – the two other comets studied in detail by scientists – “raises the question of whether any comet is typical when looked at closely,” the team writes.


“This comet is a geologic wonder,” said Peter Schultz, a professor of geological sciences at Brown University and a co-investigator on the mission team. “There are smooth surfaces, filled-in craters, ridges, cliffs. Tempel 1 also features an area marked by innumerable bumps and valleys. This all suggests a long history of evolution.”

Deep Impact, managed by NASA’s Jet Propulsion Laboratory and the University of Maryland, aims to better understand how comets are built and what they’re made of. Some scientists believe that comets, which contain water ice and organic matter, may have carried ingredients necessary for life to Earth during a long-ago collision.

On Tempel 1, both ice and organic dust were initially seen in the plume that rapidly left the comet within the first few seconds after a copper-wrapped impactor hit. The team found that the comet’s surface consists of a powdery layer tens of meters deep.

“The most significant finding is the nature of the surface of the comet,” Schultz said. “We now know that it isn’t covered in a hard crust. It’s a fine-grained, loosely glued layer of organic powder and ice. You couldn’t make a snowball on Tempel 1.”

Two graduate students in the Department of Geological Sciences at Brown – Clara Eberhardy and Carolyn Ernst – were at the Jet Propulsion Laboratory in July to analyze data. Eberhardy assisted in spectral analysis; Ernst examined the flash after the space probe hit. Both are co-authors on the Science paper.

Schultz said the science team still has years of work ahead to determine fully the structure and composition of the comet. For example, scientists were unable to identify all the organic compounds that make up Tempel 1, information that could shed new light on formation of the solar system or how life came to Earth.

“Deep Impact lived up to its name and more,” Schultz said. “But there are undoubtedly more surprises to be pulled out of the treasure trove of data.”

NASA funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>