Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA’s Deep Impact Team Releases First Snapshot of Comet Tempel 1

07.09.2005


The surface of comet Tempel 1, hit by a NASA space probe during a spectacular July 4 experiment, bears evidence of impact craters, suggesting that the comet has collided with asteroids or other space travelers in its journeys around the Sun.



Several dozen circular features that appear to be impact craters, ranging from 40 to 400 meters across, were spotted on Tempel 1 during the Deep Impact mission, according to first results from the mission team published by Science and released at the annual meeting of the Division of Planetary Sciences of the American Astronomical Society held at the University of Cambridge.

Tempel 1 is the first comet to show evidence for impact craters. In fact, differences in the comet’s topography and shape compared with Borrelly and Wild 2 – the two other comets studied in detail by scientists – “raises the question of whether any comet is typical when looked at closely,” the team writes.


“This comet is a geologic wonder,” said Peter Schultz, a professor of geological sciences at Brown University and a co-investigator on the mission team. “There are smooth surfaces, filled-in craters, ridges, cliffs. Tempel 1 also features an area marked by innumerable bumps and valleys. This all suggests a long history of evolution.”

Deep Impact, managed by NASA’s Jet Propulsion Laboratory and the University of Maryland, aims to better understand how comets are built and what they’re made of. Some scientists believe that comets, which contain water ice and organic matter, may have carried ingredients necessary for life to Earth during a long-ago collision.

On Tempel 1, both ice and organic dust were initially seen in the plume that rapidly left the comet within the first few seconds after a copper-wrapped impactor hit. The team found that the comet’s surface consists of a powdery layer tens of meters deep.

“The most significant finding is the nature of the surface of the comet,” Schultz said. “We now know that it isn’t covered in a hard crust. It’s a fine-grained, loosely glued layer of organic powder and ice. You couldn’t make a snowball on Tempel 1.”

Two graduate students in the Department of Geological Sciences at Brown – Clara Eberhardy and Carolyn Ernst – were at the Jet Propulsion Laboratory in July to analyze data. Eberhardy assisted in spectral analysis; Ernst examined the flash after the space probe hit. Both are co-authors on the Science paper.

Schultz said the science team still has years of work ahead to determine fully the structure and composition of the comet. For example, scientists were unable to identify all the organic compounds that make up Tempel 1, information that could shed new light on formation of the solar system or how life came to Earth.

“Deep Impact lived up to its name and more,” Schultz said. “But there are undoubtedly more surprises to be pulled out of the treasure trove of data.”

NASA funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>