Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA’s Deep Impact Team Releases First Snapshot of Comet Tempel 1

07.09.2005


The surface of comet Tempel 1, hit by a NASA space probe during a spectacular July 4 experiment, bears evidence of impact craters, suggesting that the comet has collided with asteroids or other space travelers in its journeys around the Sun.



Several dozen circular features that appear to be impact craters, ranging from 40 to 400 meters across, were spotted on Tempel 1 during the Deep Impact mission, according to first results from the mission team published by Science and released at the annual meeting of the Division of Planetary Sciences of the American Astronomical Society held at the University of Cambridge.

Tempel 1 is the first comet to show evidence for impact craters. In fact, differences in the comet’s topography and shape compared with Borrelly and Wild 2 – the two other comets studied in detail by scientists – “raises the question of whether any comet is typical when looked at closely,” the team writes.


“This comet is a geologic wonder,” said Peter Schultz, a professor of geological sciences at Brown University and a co-investigator on the mission team. “There are smooth surfaces, filled-in craters, ridges, cliffs. Tempel 1 also features an area marked by innumerable bumps and valleys. This all suggests a long history of evolution.”

Deep Impact, managed by NASA’s Jet Propulsion Laboratory and the University of Maryland, aims to better understand how comets are built and what they’re made of. Some scientists believe that comets, which contain water ice and organic matter, may have carried ingredients necessary for life to Earth during a long-ago collision.

On Tempel 1, both ice and organic dust were initially seen in the plume that rapidly left the comet within the first few seconds after a copper-wrapped impactor hit. The team found that the comet’s surface consists of a powdery layer tens of meters deep.

“The most significant finding is the nature of the surface of the comet,” Schultz said. “We now know that it isn’t covered in a hard crust. It’s a fine-grained, loosely glued layer of organic powder and ice. You couldn’t make a snowball on Tempel 1.”

Two graduate students in the Department of Geological Sciences at Brown – Clara Eberhardy and Carolyn Ernst – were at the Jet Propulsion Laboratory in July to analyze data. Eberhardy assisted in spectral analysis; Ernst examined the flash after the space probe hit. Both are co-authors on the Science paper.

Schultz said the science team still has years of work ahead to determine fully the structure and composition of the comet. For example, scientists were unable to identify all the organic compounds that make up Tempel 1, information that could shed new light on formation of the solar system or how life came to Earth.

“Deep Impact lived up to its name and more,” Schultz said. “But there are undoubtedly more surprises to be pulled out of the treasure trove of data.”

NASA funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>