Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vegetation growth may quickly raise Arctic temperatures

06.09.2005


Warming in the Arctic is stimulating the growth of vegetation and could affect the delicate energy balance there, causing an additional climate warming of several degrees over the next few decades. A new study indicates that as the number of dark-colored shrubs in the otherwise stark Arctic tundra rises, the amount of solar energy absorbed could increase winter heating by up to 70 percent. The research will be published 7 September in the first issue of the Journal of Geophysical Research-Biogeosciences, published by the American Geophysical Union.



The study in western Alaska during the winters in 2000-2002 shows how the increasing abundance of high-latitude vegetation, particularly shrubs, interacts with the snow and affects Earth’s albedo, or the reflection of the Sun’s rays from the surface. The paper, which also analyzes the ramifications of continued plant growth in the tundra regions, written by researchers at the U.S. Army Cold Regions Research and Engineering Laboratory and at Colorado State University. It presents the first evidence that shrub growth could alter the winter energy balance of the Arctic and subarctic tundra in a substantial way.

The authors measured five adjacent sites in subarctic Alaska. They included areas covered by continuous forest canopy, others dotted with shrubs, and some of barren tundra. They found that mid-winter albedo was greatly reduced where shrubs were exposed and that melting began several weeks earlier in the spring at these locations, as compared to snow-covered terrain. The researchers note, however, that the shrubs’ branches produced shade that slowed the rate of melting, so that the snowmelt finished at approximately the same time for all the sites they examined.


Matthew Sturm, lead author of the study, notes that warming in the region seems to have stimulated shrub growth, which further warms the area and creates a feedback effect that can promote higher temperatures and even more growth. This feedback could, in turn, accelerate increases in the shrubs’ range and size over the four million square kilometer [1.5 million square mile] tundra and effect significant changes over the region.

"Basically, if tundra is converted to shrubland, more solar energy will be absorbed in the winter than before," Sturm says. And while previous research has shown that warmer temperatures during the Arctic summer enhance shrub growth, "our study is important because it suggests that the winter processes could also contribute to and amplify the rate of the [growth]."

Sturm cites satellite and photographic evidence showing increasing plant growth across the Alaskan, Canadian, and Euro-Asian Arctic and notes that continued warming will likely produce thicker stands of brush that protrude above the snow. The new, brushy landscape would replace the smooth, white environment that currently dominates the Arctic during its 8-10 month winter.

In addition, the increasing shrub cover would impact more than just the energy balance in the Arctic. With nearly 40 percent of the world’s soil carbon is stored in Arctic soils, any change in vegetation and energy is likely to trigger a response in the Arctic carbon budget. Scientists are still trying to understand the nature of this response, but Sturm and his coauthors conclude that the feedback effects they describe would undoubtedly accelerate its rate. They conclude that combined effects of increasing shrubs on both energy and carbon could change the Arctic in a way that affects the rest of the world.

Harvey Leifert | EurekAlert!
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>