Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snowball Antartica – Early Drake Passage Opening Led To Global Change

31.08.2005


New results shed light on how Antarctica became the icy, barren continent that we know today. British Antarctic Survey (BAS) scientists have discovered that 30-50 million years ago, South America and Antarctica split apart very rapidly. This formed the Drake Passage and resulted in a major global cooling. The findings are published in the latest issue of Earth and Planetary Science Letters.

Lead Author Dr Roy Livermore says ‘we deciphered the remarkable ‘herringbone’ pattern of ridges that were etched into the Earth’s crust beneath the remote Weddell Sea when South America moved away from Antarctica. This revealed that the two continents separated extremely quickly in geological time forming a shallow ‘gateway’ between the Pacific and Atlantic oceans. We estimate that this happened some ten to twenty million years earlier than the previous oldest estimate. Even a shallow (less than 1000 metres) gateway would have had a profound effect on Southern Ocean circulation and subsequently climate”.

Such a gateway, by completing a circuit of water around Antarctica, eventually led to the formation of the Antarctic Circumpolar Current, the world’s largest deep current which now transports some 130 million cubic metres of water through the Drake Passage every second. The effect was to cut Antarctica off from warm southward flowing currents leaving it frozen and desolate.



This new research reinforces findings from deep-sea sediments cores taken from the Southern Ocean and supports the theory that the opening of the Drake Passage could have triggered the abrupt global cooling event and extensive growth of the Antarctic ice sheet 33-34 million years ago.

Amanda Lynnes | alfa
Further information:
http://www.antarctica.ac.uk

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>