Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Images Reveal Different Magma Pools Form the Ocean’s Crust

29.08.2005


For the first time, scientists have produced images of the oceanic crust and found that the upper and lower layers of the crust are likely formed from different magma pools. The images begin to answer some lingering questions about where new ocean crust comes from and whether it is all formed the same way.



Geophysicists Robert Detrick and Juan-Pablo Canales of Woods Hole Oceanographic Institution (WHOI) and colleagues used reflected seismic, or sound, waves to successfully image the structure of the lower crust across the flanks of the Juan de Fuca Ridge, a spreading plate boundary off the Pacific Northwest coast. Their study, co-authored by researchers at Columbia University’s Lamont-Doherty Earth Observatory and Scripps Institution of Oceanography, appears in the August 25, 2005 issue of Nature.

By recording the reflection of seismic waves off the lower crust at the crust-mantle boundary, a technique common in oil exploration, the researchers found evidence strongly suggesting that the base of the crust forms much differently than its overlying layers.


“Seismic reflection is a powerful tool to image the sub-surface detailed structure of the Earth down to several kilometers or miles below the surface," study co-author Canales said. “Scientists studying the formation of the ocean crust have been debating over the past decade whether all of the crust is formed from magma that accumulates in a single pool or lens a mile or two deep, or if it forms from multiple magma sills at different levels.”

Detrick, Canales and colleagues analyzed about 1,500 kilometers (935 miles) of data collected on the Juan de Fuca Ridge off the coast of Washington, Oregon and northern California. The images are the first of their kind showing solidified magma lenses and sills, narrow lateral intrusions of magma, embedded in the boundary between the mantle and the overlying crust, a region known as the Moho transition zone. The existence of these magma lenses near a mid-ocean ridge suggests that the lower oceanic crust is formed from several smaller sources of magma rather than a single large pool located in the middle of the crust.

Unlike continental crust, which is very old and thick, oceanic crust averages 6-7 kilometers (3-4 miles) thick and is constantly being recycled at tectonic plate boundaries on the seafloor. Crust is destroyed at subduction zones, where plates come together, and created at mid-ocean ridges, where plates are pulling apart, like the Juan de Fuca Ridge. At these ridges, also known as seafloor spreading centers, molten rock, or magma, rises from deep within the earth and solidifies to become new crust. But the exact source of that magma—particularly the magma that forms the lower layers of the crust—was not well understood until now.

Previously, geophysicists knew that the topmost layer of the crust cooled from molten rock supplied by a single pool, or lens, of magma located in the crust’s middle layers. What was not known was whether the lower crust, which lies just above the mantle, solidified from the same melt lens or from many smaller magma bodies in the deeper crust-mantle transition zone. The new study found evidence of multiple pockets of molten rock now frozen, lending strong support to the latter theory.

Geophysical studies along mid-ocean ridges to date using seismic reflection have been able to image only one single crustal melt lens, supporting the first model of crustal formation. However, other remote-sensing geophysical methods that are used to infer the mechanical properties of the crust indicate that magma must also accumulate at deeper levels, in particular at the base of the crust or the Moho transition zone.

The multiple-lens model comes from field observations at ophiolites where the remnants of the multiple melt sills can be mapped. Ophiolites are slabs of oceanic crust long ago thrust up onto dry land and are easily accessible to geologists seeking clues to what new crust might look like.

“It is exciting that different observational approaches, marine seismology and ophiolite studies, that look at the same problem at different spatial and resolution scales are converging towards a unified geological and geophysical model of how the ocean crust is formed," Canales said.

The study was funded by the National Science Foundation.

Shelley Dawicki | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Earth Sciences:

nachricht A new dead zone in the Indian Ocean could impact future marine nutrient balance
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>