Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ERS-2 successfully targets China’s Typhoon Matsa

12.08.2005


Heavy rainfall and flooding from Typhoon Matsa killed at least 12 people and caused millions of euros worth of damage in China. In Matsa’s aftermath, unique data from ESA’s ERS-2 spacecraft reveal the interior wind fields powering it at its height.



China’s ninth typhoon this year, Matsa first came ashore at Yuhan County in Zhejiang Province on 6 August, with reported winds up to 250 kilometres per hour. Matsa brought heavy rains and serious damage to several coastal provinces and cities – in Zhejiang alone 13 000 houses were destroyed and farmland inundated.

Since downgraded to a tropical storm, Matsa reached Beijing on the evening of 8 August although failed to bring the torrential rainfall that was initially anticipated by the authorities - poised to evacuate thousands from vulnerable areas on the outskirts of the city.


Due to the support of China’s Remote-Sensing Ground Station (RSGS), located in Beijing and run by the Chinese Academy of Sciences, scientifically unique information about the interior structure of Matsa at its strongest has been made available to worldwide meteorological offices and scientific users. A detailed picture of the wind speed and direction around the centre of the typhoon was acquired from ESA’s ERS-2 on 4 August, when the typhoon was still in the East China Sea.

ERS-2 instruments include a C-band scatterometer which works by sending a high-frequency radar pulse down to the ocean, then analysing the pattern of backscatter reflected back again. Scatterometers are particularly useful in measuring wind speed and direction at the sea surface, by detecting signature scatter from water ripples caused by wind.

ERS-2’s scatterometer is the only instrument of its type capable of peering through rain and bad weather, and is also able to gather data during both day and night. This makes it very useful as a tool to study the structure of typhoons, hurricanes and other strong storms.

Back in 2001 the spacecraft was struck a blow as the last of its pointing gyroscopes failed. However all instruments were still functioning perfectly, so ESA engineers worked with industry to develop a new ’gyro-less’ working mode to resume data delivery.

Then in June 2003 the onboard Low Bit Rate data recorder failed, used to store non-radar image data when out of touch with ESA ground stations. However, recognising the value of this data, international ground stations responded by working voluntarily to collect and distribute ERS-2 results in near-real time.

The Beijing RSGS joined the effort in May 2005, and with NASA’s McMurdo Ground Station having began participating around the same time, ERS-2 data are being acquired across all seven continents, with all data acquired from this voluntary group effort shared with the wider meteorological and scientific community.

ERS-2’s scatterometer saw service interrupted between 2001 and 2003, due to degradation in the spacecraft’s pointing control, but a new algorithm developed by the Belgian Royal Military Academy (RMA) returned it to operational status. This algorithm has been installed in the various cooperating ground stations.

Today, ERS-2 scatterometer data is employed by users worldwide, including the UK-based European Centre for Medium-Range Weather Forecasts (ECMWF), who routinely assimilate its results into their weather prediction models. ECMWF’s remit includes the study of worldwide storms, so they have assimilated the Matua scatterometer results in their weather analysis for this time.

"The ERS-2 scatterometer data was - besides a few pressure observations - the only surface data available in the vicinity of the typhoon, and therefore valuable," stated Dr Hans Hersbach of ECMWF. "As a result, the maximum surface wind speed was enhanced from 19.8 metres per second to 21.3 metres per second and the central mean sea-level pressure was deepened by 4.5 millibars. From this analysis, the landfall of Matsu was correctly predicted to be a likely scenario."

ERS-2 flies on the same orbit but half an hour behind ESA’s ten-instrument Envisat environmental satellite, and so offers researchers a means to validate or supplement Envisat observations. Some ERS-2 instruments – its Synthetic Aperture Radar (SAR), Along Track Scanning Radiometer (ATSR) and its atmospheric Global Ozone Monitoring Experiment (GOME) – have counterparts on Envisat, although its scatterometer is unequalled for the time being.

To ensure continuity of C-band scatterometer coverage into the future, a more advanced scatterometer called ASCAT is payload of the payload for the ESA-built MetOp mission, due to launch in 2006.

Typhoon season

A typhoon is the term for a tropical cyclone that occurs in the northwest Pacific or Indian Oceans west of the International Dateline. It is a large, powerful storm that rotates around a central area of extreme low pressure.

Typhoons arise in warm tropical waters that transfer their heat to the air. The warmed air rises rapidly, in the process creating an area of low pressure at the water surface. Winds begin rushing inwards and upwards around this low-pressure zone. Typhoons can form all-year-round in the waters off China, but the peak season comes between June and December.

Mariangela D’Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEM89U808BE_economy_0.html

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>