Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Volcanoes inner workings disclosed when the Earth moved

10.08.2005


While volcanologists can see the dome of the Soufriere Hills Volcano on the island of Montserrat grow and collapse, it takes instrumentation to delve beneath the surface. Now, Penn State geologists, using tiltmeter measurements, have investigated a shallow area under the dome and what they found was not quite what they expected.



"The Soufriere Hills Volcano has been building a lava dome, collapsing and rebuilding a dome since 1995, when it first erupted," says Dr. Christina Widiwijayanti, postdoctoral researcher in geosciences, working with Dr. Barry Voight, professor of geosciences. "We are working with data collected from tiltmeters in 1997 to try to understand the volcano’s behavior and what is happening inside."

Voight had placed several tiltmeters around the crater rim of the volcano in 1996-97, but no more than two were ever working at once and during the important June 25, 1997 dome collapse, only one was operational. However, from a record the previous month, two tiltmeters recorded the cycle of pressurization and depressurization that took place under the dome on a 3 to 30-hour cycle.


A tiltmeter, like a carpenter’s level, measures the local angular movement of the Earth. With synchronized data from two tiltmeters, the researchers, who included Dr. Amanda Clarke a former Penn State graduate student who is now an assistant professor at Arizona State University, and Dr. Derek Elsworth, professor of energy and geo-environmental engineering, could determine the depth of the source region causing the tilting near the dome. They reported their work in a recent issue of Geophysical Research Letters.

"But, what we really would like to know is the configuration of the pressurized area, its shape and size, as well as position," says Widiwijayanti. "We know the size and shape of the conduit system that delivers the lava, but our results suggest that a more extensive region is involved in the pressurization."

The researchers found the pressure to be centered about a half mile below the dome or nearly 2.5 miles above the magma chamber feeding the surface flow of lava. The magma tube or conduit in this area is about 100 feet in diameter, but, using tiltmeter data collected during the collapse, the researchers found that the region undergoing pressurization and depressurization is between about 700 and 1100 feet in diameter. The researchers used a sphere and a cylinder to model the pressurized area. The known size of the dome collapse could be used to calibrate the source pressure.

"When the dome collapses, the area should be rebounding, going up, but the tiltmeter shows that it goes down" said Widiwijayanti. "There must be something related to depressurizing the system in the volcano that does this."

The researchers believe that the region around the conduit is fractured, with the pore spaces filled by hot water and gas. "When the volcano conduit at depth is under pressure, super-heated steam and other gases can leak out of the conduit and raise the pressure in the fractured rock over a broad region. That is what we think we are seeing as the pressurized zone," says Voight.

The 1997 dome collapse, with 8.5 million cubic yards of lava and talus, was not the largest at the Soufriere Hills Volcano, although 19 people were killed by it and the event rewrote the political history of Montserrat. In July 2003 the dome collapse produced 275 million cubic yards, the largest on Earth in historic time.

The 2003 collapse was recorded using new and more varied equipment installed by the CALIPSO project (Caribbean Andesite Lava Island Precision Seismo-geodetic Observatory), funded by the National Science Foundation and the U.K. Environment Research Council. Voight is project director of the consortium, which involves a number of institutions in the U.S. and U.K. While researchers recorded the 1997 data before the initiation of CALIPSO, the analysis of both data sets is part of the project.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>