Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hail And Heavy Shower - Satellite Diagnosis

09.08.2005


In the morning, a TV presenter assured the audience that the forecast definitely promised no rain. And in the afternoon, all credulous persons who had left umbrellas at home were caught by a heavy shower. Weather forecasting is a difficult and thankless task. Factors are multiple, it is practically impossible to take them all into account, therefore the forecast may be only probabilistic. However, people tend not to notice accurate forecasts, but discuss mistakes for a long time.



Nevertheless, now accuracy of forecasts, at least – that of heavy showers and hail forecasts – may be significantly increased. The hope for that is provided by research by Moscow scientists – specialists of the hydrometeorological scientific research center of Russia and their colleagues from the PLANETA Scientific Research Center for Space Hydrometeorology. The method they suggest would not require new experimental data; the data currently available is sufficient, but it will be possible now to draw out much more information from it.

The researchers recounted their development at the Second Open All-Russian Conference “Up-to-date problems of remote probing of the Earth from space”.


The heavy shower and hail forecasts are based on the data about the Earth’s outgoing thermal radiation. By measuring it from the NOAA-16 polar orbiting satellite with the help of two radiometers in microwaves and infrared spectral band, the authors learned to calculate nebulosity parameters which determine the heavy shower and hail formation process. Based on these parameters, in turn, the researchers managed to calculate values of precipitation intensity and the diameter of hailstones.

Fundamental parameters are two atmospheric temperatures: at the level of the nebulosity upper bound and at the surface directly under the cloud. These two temperatures are determined with the help of radiometers located on the satellite. This data allows to determine the altitude of nebulosity upper bound, maximum speed of vertical upstreams and to evaluate the value of maximum precipitation intensity at the surface in the nebulosity area. Simply speaking, this allows to recon whether the cloud under consideration is fraught with a heavy shower or light rain, as well as the probability if it will spill with rain at all.

To estimate if the cloud would fall down with hail and the size of hailstones, the researchers invented a technique, which is based on the same input data. By the way, this technique has been already tested and it is successfully used by the specialists of the antihail service in Argentina.
In general, possessing a relatively small data reserve, meteorologists are able now to identify a shower cloud or a cloud fraught with hail (it is called hail-bearing) with about 80 percent probability. They can draw respective maps. The most important things to have are a good algorithm, software and a high-speed computer. However, meteorologists like to use computers.

It is not without reason that one of the most powerful in the world supercomputers, located in Japan and computing the climate on the Earth, is a huge object, its square twice exceeding a football ground. But such supermachines are not required to solve the tasks of recognizing hail and shower by thermal radiation of the Earth. Machines available now are sufficient.

An agreeable advantage of the new approach is that it is multipurpose. Not only does it allow to diagnose heavy shower-rains and hail but it also gives an opportunity to assess intensity of these precipitations. This can be assessed above any type of surface, even above snow or ice.

Specialists know that this particularly difficult to do. The public will be glad that weather forecasts may become much more accurate. They would not carry umbrellas in vain, or caught by showers without an umbrella either.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Earth Sciences:

nachricht PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target
22.05.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>