Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hail And Heavy Shower - Satellite Diagnosis

09.08.2005


In the morning, a TV presenter assured the audience that the forecast definitely promised no rain. And in the afternoon, all credulous persons who had left umbrellas at home were caught by a heavy shower. Weather forecasting is a difficult and thankless task. Factors are multiple, it is practically impossible to take them all into account, therefore the forecast may be only probabilistic. However, people tend not to notice accurate forecasts, but discuss mistakes for a long time.



Nevertheless, now accuracy of forecasts, at least – that of heavy showers and hail forecasts – may be significantly increased. The hope for that is provided by research by Moscow scientists – specialists of the hydrometeorological scientific research center of Russia and their colleagues from the PLANETA Scientific Research Center for Space Hydrometeorology. The method they suggest would not require new experimental data; the data currently available is sufficient, but it will be possible now to draw out much more information from it.

The researchers recounted their development at the Second Open All-Russian Conference “Up-to-date problems of remote probing of the Earth from space”.


The heavy shower and hail forecasts are based on the data about the Earth’s outgoing thermal radiation. By measuring it from the NOAA-16 polar orbiting satellite with the help of two radiometers in microwaves and infrared spectral band, the authors learned to calculate nebulosity parameters which determine the heavy shower and hail formation process. Based on these parameters, in turn, the researchers managed to calculate values of precipitation intensity and the diameter of hailstones.

Fundamental parameters are two atmospheric temperatures: at the level of the nebulosity upper bound and at the surface directly under the cloud. These two temperatures are determined with the help of radiometers located on the satellite. This data allows to determine the altitude of nebulosity upper bound, maximum speed of vertical upstreams and to evaluate the value of maximum precipitation intensity at the surface in the nebulosity area. Simply speaking, this allows to recon whether the cloud under consideration is fraught with a heavy shower or light rain, as well as the probability if it will spill with rain at all.

To estimate if the cloud would fall down with hail and the size of hailstones, the researchers invented a technique, which is based on the same input data. By the way, this technique has been already tested and it is successfully used by the specialists of the antihail service in Argentina.
In general, possessing a relatively small data reserve, meteorologists are able now to identify a shower cloud or a cloud fraught with hail (it is called hail-bearing) with about 80 percent probability. They can draw respective maps. The most important things to have are a good algorithm, software and a high-speed computer. However, meteorologists like to use computers.

It is not without reason that one of the most powerful in the world supercomputers, located in Japan and computing the climate on the Earth, is a huge object, its square twice exceeding a football ground. But such supermachines are not required to solve the tasks of recognizing hail and shower by thermal radiation of the Earth. Machines available now are sufficient.

An agreeable advantage of the new approach is that it is multipurpose. Not only does it allow to diagnose heavy shower-rains and hail but it also gives an opportunity to assess intensity of these precipitations. This can be assessed above any type of surface, even above snow or ice.

Specialists know that this particularly difficult to do. The public will be glad that weather forecasts may become much more accurate. They would not carry umbrellas in vain, or caught by showers without an umbrella either.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>