Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hail And Heavy Shower - Satellite Diagnosis

09.08.2005


In the morning, a TV presenter assured the audience that the forecast definitely promised no rain. And in the afternoon, all credulous persons who had left umbrellas at home were caught by a heavy shower. Weather forecasting is a difficult and thankless task. Factors are multiple, it is practically impossible to take them all into account, therefore the forecast may be only probabilistic. However, people tend not to notice accurate forecasts, but discuss mistakes for a long time.



Nevertheless, now accuracy of forecasts, at least – that of heavy showers and hail forecasts – may be significantly increased. The hope for that is provided by research by Moscow scientists – specialists of the hydrometeorological scientific research center of Russia and their colleagues from the PLANETA Scientific Research Center for Space Hydrometeorology. The method they suggest would not require new experimental data; the data currently available is sufficient, but it will be possible now to draw out much more information from it.

The researchers recounted their development at the Second Open All-Russian Conference “Up-to-date problems of remote probing of the Earth from space”.


The heavy shower and hail forecasts are based on the data about the Earth’s outgoing thermal radiation. By measuring it from the NOAA-16 polar orbiting satellite with the help of two radiometers in microwaves and infrared spectral band, the authors learned to calculate nebulosity parameters which determine the heavy shower and hail formation process. Based on these parameters, in turn, the researchers managed to calculate values of precipitation intensity and the diameter of hailstones.

Fundamental parameters are two atmospheric temperatures: at the level of the nebulosity upper bound and at the surface directly under the cloud. These two temperatures are determined with the help of radiometers located on the satellite. This data allows to determine the altitude of nebulosity upper bound, maximum speed of vertical upstreams and to evaluate the value of maximum precipitation intensity at the surface in the nebulosity area. Simply speaking, this allows to recon whether the cloud under consideration is fraught with a heavy shower or light rain, as well as the probability if it will spill with rain at all.

To estimate if the cloud would fall down with hail and the size of hailstones, the researchers invented a technique, which is based on the same input data. By the way, this technique has been already tested and it is successfully used by the specialists of the antihail service in Argentina.
In general, possessing a relatively small data reserve, meteorologists are able now to identify a shower cloud or a cloud fraught with hail (it is called hail-bearing) with about 80 percent probability. They can draw respective maps. The most important things to have are a good algorithm, software and a high-speed computer. However, meteorologists like to use computers.

It is not without reason that one of the most powerful in the world supercomputers, located in Japan and computing the climate on the Earth, is a huge object, its square twice exceeding a football ground. But such supermachines are not required to solve the tasks of recognizing hail and shower by thermal radiation of the Earth. Machines available now are sufficient.

An agreeable advantage of the new approach is that it is multipurpose. Not only does it allow to diagnose heavy shower-rains and hail but it also gives an opportunity to assess intensity of these precipitations. This can be assessed above any type of surface, even above snow or ice.

Specialists know that this particularly difficult to do. The public will be glad that weather forecasts may become much more accurate. They would not carry umbrellas in vain, or caught by showers without an umbrella either.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>