Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LSU researchers say 2005 Hurricane Season could be historic

08.08.2005


LSU climatologists use historical records to put 2005 season in perspective



On Tuesday, Aug. 2, the National Oceanographic and Atmospheric Administration revised its previous hurricane forecast, predicting that there would be an additional 11-14 named storms in 2005. This brought the total projection for the year to 18-21 storms. Based on their research into hurricane season records dating back to 1851, two LSU climatologists believe that this new prediction is likely accurate and that 2005 could rival some of the busiest seasons ever recorded.

Kevin Robbins, associate professor of geography & anthropology at LSU and director of the Southern Regional Climate Center, and LSU Assistant Professor of Geography & Anthropology and State Climatologist Barry Keim, examined hurricane season records from 1851-2005. They concentrated on the top 10 seasons with the earliest occurrences of named storms: 1887, 1893, 1933, 1936, 1990, 1995, 1996, 2003, 2004 and 2005.


Robbins and Keim discovered that, in terms of the number of named storms, these seasons were more active than average. The average is 9.6 named storms per season, however, these "early start" seasons averaged 16.1 named storms over the complete season.

The 2005 season is off to a record start. As of Aug. 3, NOAA had observed and named eight tropical storms, of which two became Category 4 hurricanes with winds of at least 131 miles per hour. Based on the records going back to 1851, this season set records for the earliest occurrence of the fourth, fifth, sixth, seventh and eighth named storms. According to the historical record, 1936 set the record for the earliest occurrence of nine named storms. If another named storm occurs before Aug. 20, then 2005 will break this record as well.

"We are still very early in the hurricane season, which usually shows peak activity from mid-August through early October," said Robbins. "Storms during this period are usually more frequent, of longer duration and of higher intensity due to atmospheric and oceanic conditions that are favorable to storm development."

Robbins and Keim said that the likelihood of tropical storm and hurricane development is increased by warm sea surface temperature, known as "SST," and low wind shear in formation regions. According to their research, the period from the mid-1920s to the mid-1960s had warmer-than-normal SST and exhibited "very active hurricane seasons." This was followed by a period of cooler SST and relative calm that lasted until 1994. This changed again in 1995, which began a period of higher SST and heightened hurricane activity that is ongoing and likely to continue for several decades.

Keim’s and Robbins’ research also revealed another active period of storms from roughly 1870 to 1910, with some extremely active years evident in the late 1880s and early 1890s.

"We entered into a heightened period of Atlantic tropical activity, beginning in 1995 that is expected to be multi-decadal. Elevated SST in the tropical Atlantic, favorable upper air conditions in key storm formation regions and comparison to other years with early season activity all point to a very intense hurricane season for 2005," said Keim. "While no two seasons are totally alike, the 2005 hurricane season could rival historically significant years such as 1887, which had 19 named storms; 1933, which had 21 named storms; and 1995, which had 19 named storms."

Kevin Robbins | EurekAlert!
Further information:
http://www.srcc.lsu.edu

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>