Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LSU researchers say 2005 Hurricane Season could be historic

08.08.2005


LSU climatologists use historical records to put 2005 season in perspective



On Tuesday, Aug. 2, the National Oceanographic and Atmospheric Administration revised its previous hurricane forecast, predicting that there would be an additional 11-14 named storms in 2005. This brought the total projection for the year to 18-21 storms. Based on their research into hurricane season records dating back to 1851, two LSU climatologists believe that this new prediction is likely accurate and that 2005 could rival some of the busiest seasons ever recorded.

Kevin Robbins, associate professor of geography & anthropology at LSU and director of the Southern Regional Climate Center, and LSU Assistant Professor of Geography & Anthropology and State Climatologist Barry Keim, examined hurricane season records from 1851-2005. They concentrated on the top 10 seasons with the earliest occurrences of named storms: 1887, 1893, 1933, 1936, 1990, 1995, 1996, 2003, 2004 and 2005.


Robbins and Keim discovered that, in terms of the number of named storms, these seasons were more active than average. The average is 9.6 named storms per season, however, these "early start" seasons averaged 16.1 named storms over the complete season.

The 2005 season is off to a record start. As of Aug. 3, NOAA had observed and named eight tropical storms, of which two became Category 4 hurricanes with winds of at least 131 miles per hour. Based on the records going back to 1851, this season set records for the earliest occurrence of the fourth, fifth, sixth, seventh and eighth named storms. According to the historical record, 1936 set the record for the earliest occurrence of nine named storms. If another named storm occurs before Aug. 20, then 2005 will break this record as well.

"We are still very early in the hurricane season, which usually shows peak activity from mid-August through early October," said Robbins. "Storms during this period are usually more frequent, of longer duration and of higher intensity due to atmospheric and oceanic conditions that are favorable to storm development."

Robbins and Keim said that the likelihood of tropical storm and hurricane development is increased by warm sea surface temperature, known as "SST," and low wind shear in formation regions. According to their research, the period from the mid-1920s to the mid-1960s had warmer-than-normal SST and exhibited "very active hurricane seasons." This was followed by a period of cooler SST and relative calm that lasted until 1994. This changed again in 1995, which began a period of higher SST and heightened hurricane activity that is ongoing and likely to continue for several decades.

Keim’s and Robbins’ research also revealed another active period of storms from roughly 1870 to 1910, with some extremely active years evident in the late 1880s and early 1890s.

"We entered into a heightened period of Atlantic tropical activity, beginning in 1995 that is expected to be multi-decadal. Elevated SST in the tropical Atlantic, favorable upper air conditions in key storm formation regions and comparison to other years with early season activity all point to a very intense hurricane season for 2005," said Keim. "While no two seasons are totally alike, the 2005 hurricane season could rival historically significant years such as 1887, which had 19 named storms; 1933, which had 21 named storms; and 1995, which had 19 named storms."

Kevin Robbins | EurekAlert!
Further information:
http://www.srcc.lsu.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>