Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NRL measures record wave during Hurricane Ivan

08.08.2005


Scientists at the Naval Research Laboratory - Stennis Space Center (NRL-SSC) measured a record-size ocean wave when the eye of Hurricane Ivan passed over NRL moorings deployed last May in the Gulf of Mexico. The possibility of a super wave is often suggested by anecdotal evidence such as damage caused by Hurricane Ivan in September of 2004 to an offshore rig in the Gulf of Mexico that was nearly 80 feet above the ocean surface. Hence, some of the destruction done by Ivan has been attributed to a rogue wave. According to industry and national weather sources, the damage done by waves during Ivan has been on the extreme high end for a category 4 hurricane. Ivan has been the most expensive hurricane ever for the oil and gas industry in the Gulf. The Minerals Management Service (MMS) reported that Ivan amazingly forced evacuation of 75% of the manned platforms in the Gulf (574 platforms) and 59% of the drilling rigs (69 rigs), set adrift 5 rigs and sunk 7 rigs entirely. However, the damage by Hurricane Ivan in the oil fields in the Gulf cannot be measured by how many platforms or rigs were destroyed. The most costly damage is believed to have been made to the underwater pipelines. Aside from obvious leaks, some pipelines were reported to have moved 3000 ft while others were buried under 30 feet of mud and cannot be found. The most extensive damage to the pipelines is attributed to undersea mudslides (equivalent to a snow avalanche) and to extreme waves. The complete findings of this study are published in the August 5, 2005 issue of Science.



During NRL’s Slope to Shelf Energetics and Exchange Dynamics (SEED) field experiment, six current profiler moorings that also contained wave/tide gauges (Sea-Bird Electronics SBE 26) were deployed on the continental shelf at water depths ranging between 60 and 90 meters just west of the DeSoto Canyon, about 100 miles south of Mobile Bay, Alabama. An additional eight deep moorings were deployed down the shelf slope but did not contain wave/tide gauges. Fortuitously, between 8:00 pm CDST and midnight on September 15, the eye of Ivan passed through the center of the array, and almost directly over moorings 2, 5, 8, and 11. Historically, instruments in the ocean do not even survive near misses of such powerful storms, much less direct hits. Fortunately, all of the SEED moorings survived this powerful storm, and provided the best ocean measurements of currents and waves ever obtained directly under a major hurricane.

During the approach of Ivan, a moored buoy (ID 42040), deployed by the National Data Buoy Center (NDBC) near the west side of the SEED array, registered a significant wave height of 16.0 meters (53 ft). Unfortunately, the NDBC buoy broke loose and was set adrift on September 15 at 5:00 pm CDST, just before the arrival of the main force of the hurricane. According to a spokesman at NDBC, this wave height appears to be the largest ever reported by NDBC from a hurricane and comes within a few tenths of a meter of NDBC’s all-time record reported in the North Pacific. Note that the wave heights reported by the NDBC buoys are derived from wave spectra. Buoy measurements do not report time series of surface wave elevations, and hence, maximum individual wave heights can only be statistically postulated from spectrum-derived significant wave heights. The SEED wave/tide gauges, however, provided direct time series measurements of surface wave elevations. The maximum individual crest-to-trough wave heights can be reliably obtained. At mooring 3, located under the most intense winds, the maximum measured wave height was 27.7 meters (91 feet) which was part of a group of large waves with periods of approximately 10 seconds where several waves reached heights of about 20 meters (66 feet). These waves recorded by the NRL SEED gauges are by far the largest waves ever directly measured. Even larger waves could have been missed entirely on the shelf since the surface wave data from the SEED gauges were not closely sampled in time, but were instead sampled at 1 hertz over a 512 second data burst only every 8 hours. Analysis of the wave data with the winds suggests that the wave heights likely exceeded 130 feet near the eye wall of the hurricane. Orbital wave velocities generated by such large waves during Hurricane Ivan (not rogue waves) exceeded 2 meters/second at the ocean bottom (in addition to lower-frequency measured currents that exceeded 1 meter/second) and could certainly have caused much damage to underwater structures and pipelines. The measurement of "super waves" cannot be planned and are indeed very rare. These in-situ measurements made by NRL directly under a category 4 hurricane are very valuable since they can be used to provide an assessment of potential impacts to offshore structures and operations by energetic storm waves.

Donna McKinney | EurekAlert!
Further information:
http://www.nrl.navy.mil

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>