Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NRL measures record wave during Hurricane Ivan

08.08.2005


Scientists at the Naval Research Laboratory - Stennis Space Center (NRL-SSC) measured a record-size ocean wave when the eye of Hurricane Ivan passed over NRL moorings deployed last May in the Gulf of Mexico. The possibility of a super wave is often suggested by anecdotal evidence such as damage caused by Hurricane Ivan in September of 2004 to an offshore rig in the Gulf of Mexico that was nearly 80 feet above the ocean surface. Hence, some of the destruction done by Ivan has been attributed to a rogue wave. According to industry and national weather sources, the damage done by waves during Ivan has been on the extreme high end for a category 4 hurricane. Ivan has been the most expensive hurricane ever for the oil and gas industry in the Gulf. The Minerals Management Service (MMS) reported that Ivan amazingly forced evacuation of 75% of the manned platforms in the Gulf (574 platforms) and 59% of the drilling rigs (69 rigs), set adrift 5 rigs and sunk 7 rigs entirely. However, the damage by Hurricane Ivan in the oil fields in the Gulf cannot be measured by how many platforms or rigs were destroyed. The most costly damage is believed to have been made to the underwater pipelines. Aside from obvious leaks, some pipelines were reported to have moved 3000 ft while others were buried under 30 feet of mud and cannot be found. The most extensive damage to the pipelines is attributed to undersea mudslides (equivalent to a snow avalanche) and to extreme waves. The complete findings of this study are published in the August 5, 2005 issue of Science.



During NRL’s Slope to Shelf Energetics and Exchange Dynamics (SEED) field experiment, six current profiler moorings that also contained wave/tide gauges (Sea-Bird Electronics SBE 26) were deployed on the continental shelf at water depths ranging between 60 and 90 meters just west of the DeSoto Canyon, about 100 miles south of Mobile Bay, Alabama. An additional eight deep moorings were deployed down the shelf slope but did not contain wave/tide gauges. Fortuitously, between 8:00 pm CDST and midnight on September 15, the eye of Ivan passed through the center of the array, and almost directly over moorings 2, 5, 8, and 11. Historically, instruments in the ocean do not even survive near misses of such powerful storms, much less direct hits. Fortunately, all of the SEED moorings survived this powerful storm, and provided the best ocean measurements of currents and waves ever obtained directly under a major hurricane.

During the approach of Ivan, a moored buoy (ID 42040), deployed by the National Data Buoy Center (NDBC) near the west side of the SEED array, registered a significant wave height of 16.0 meters (53 ft). Unfortunately, the NDBC buoy broke loose and was set adrift on September 15 at 5:00 pm CDST, just before the arrival of the main force of the hurricane. According to a spokesman at NDBC, this wave height appears to be the largest ever reported by NDBC from a hurricane and comes within a few tenths of a meter of NDBC’s all-time record reported in the North Pacific. Note that the wave heights reported by the NDBC buoys are derived from wave spectra. Buoy measurements do not report time series of surface wave elevations, and hence, maximum individual wave heights can only be statistically postulated from spectrum-derived significant wave heights. The SEED wave/tide gauges, however, provided direct time series measurements of surface wave elevations. The maximum individual crest-to-trough wave heights can be reliably obtained. At mooring 3, located under the most intense winds, the maximum measured wave height was 27.7 meters (91 feet) which was part of a group of large waves with periods of approximately 10 seconds where several waves reached heights of about 20 meters (66 feet). These waves recorded by the NRL SEED gauges are by far the largest waves ever directly measured. Even larger waves could have been missed entirely on the shelf since the surface wave data from the SEED gauges were not closely sampled in time, but were instead sampled at 1 hertz over a 512 second data burst only every 8 hours. Analysis of the wave data with the winds suggests that the wave heights likely exceeded 130 feet near the eye wall of the hurricane. Orbital wave velocities generated by such large waves during Hurricane Ivan (not rogue waves) exceeded 2 meters/second at the ocean bottom (in addition to lower-frequency measured currents that exceeded 1 meter/second) and could certainly have caused much damage to underwater structures and pipelines. The measurement of "super waves" cannot be planned and are indeed very rare. These in-situ measurements made by NRL directly under a category 4 hurricane are very valuable since they can be used to provide an assessment of potential impacts to offshore structures and operations by energetic storm waves.

Donna McKinney | EurekAlert!
Further information:
http://www.nrl.navy.mil

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>