Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Envisat monitoring China floods as part of Dragon Programme

03.08.2005


China’s rainy season has led to serious flooding in the north-east and south of the country. A joint Chinese-European team is gathering Envisat radar imagery of the developing situation to give the authorities a way to swiftly assess affected areas and plan their responses.



Summer flooding is nothing new in these regions of the People’s Republic of China (PRC), though this year it is proving particularly severe, with more than 800 casualties countrywide and 2.45 million people forced to evacuate their homes. However this season’s flooding is being monitored in near real-time by ESA’s Envisat Advanced Synthetic Aperture Radar (ASAR) sensor, which can acquire imagery in both day and night and in all weathers.

This activity is taking place as part of ESA’s Dragon Programme of cooperation with the National Remote Sensing Centre of China (NRSCC) within the Ministry of Science and Technology of the PRC. These Envisat images are a means for the authorities to identify floodwater extent and coordinate mitigation efforts, and should be a foretaste of things to come – next season the aim is that a full near real-time monitoring service should be operational.


Flood Rapid Mapping is a dedicated Dragon thematic area. A short notice acquisition and delivery procedure exists within it, enabling Chinese partners to request ASAR acquisitions ahead of the satellite overpass. The processed images are available to download from ESA servers within eight hours after acquisition.

Strasbourg-based company SERTIT, specialising in rapid satellite mapping, has been cooperating with a team of Chinese researchers led by Professor Li Jiren of the China Institute of Water Resources and Hydropower Research (IWHR) of the Ministry of Water Resources in Beijing.

"We have been working to evaluate this procedure with our Chinese partners," explained Hervé Yésou of SERTIT. "We carried out our first testing in February, then in early June we carried out a rush acquisition of Poyang Lake flooding the town of Nanchang in Jiangxi Province and the flooding of Donting Lake in Hunan Province. Envisat ASAR images acquired on 5 June were processed and disseminated on 6 June. The flood maps and images were sent to our Chinese colleagues at the IWHR as well as the National Disaster Reduction Centre of China (NDRCC) at the Ministry of Civil Affairs and other partners of the Flood Dragon project.

"Then at the end of June came a major flood of the Xijiang River that affected the town of Wuzhou in Guangxi Province. At that time both the Chinese and European teams were away at the Dragon Programme symposium in Santorini, Greece. In the event we still managed to access, process this crisis data, then present it to the symposium.

"Most recently, in mid-July, we have seen flooding of the Nenjiang River in Heilongjiang Province in northeast China, following continuous rainfall reported in the vicinity of the city of Qigihar."

Flood monitoring is only one of numerous Dragon Programme research themes, which range from agriculture and forests to seismic activity and landslide monitoring, assessing drought, air quality, oceanography and climate. Dragon formally began in April 2004. Since then more than 2500 radar images from Envisat and ESA’s ERS missions have so far been delivered to Dragon teams.

The latest Dragon Symposium took place in Santorini between 27 June and 1 July, attended by 120 scientists including 50 from PRC.

Progress and early results were reported during the event and updates were given on project teaming, including Greek scientists joining as co-investigators. Supporting in-situ data measurements required to validate satellite results were detailed and reports were made from an associated young scientist training programme.

Presentations included details of research being done into the synergistic use of ASAR with Envisat’s optical Medium Resolution Imaging Spectrometer (MERIS) and other satellite sensors for the building up of land use databases for flood disaster assessment. Also recounted was how using ASAR in multipolarisation mode improves the definition and mapping of flood extents, and the measuring of soil moisture content in the upper surface layer.

Dragon at sea

Water away from the land proved another promising thematic area, with oceanographers taking a particular interest in the China Seas.

Presentations covered how ocean colour measurements made by Envisat’s MERIS can reveal marine phytoplankton populations – important as the base of the marine food web and a key sink of carbon – as well as suspended sediment.

Researchers are building up a database of water optical properties as well as atmospheric correction for the region and developing a method of monitoring ’red tide’ events – when local conditions cause phytoplankton numbers to explode out of control. MERIS is also being used to look at the estuary of the Yangtze River, whose waters have some of the highest sediment content in the world.

Parameters of waves on the surface of the East China Sea are being studied with ASAR data, while teams are using Envisat’s heat-sensitive Advanced Along Track Scanning Radiometer (AATSR) in conjunction with ASAR and MERIS to study the Kuroshio Current, which is the Chinese equivalent of Europe’s Gulf Stream, flowing from the Philippines to northern Japan.

Dragon in the air

The air over China is also an area of interest to Dragon researchers, with satellites proving an especially useful tool for analysing trends and seasonal variations in atmospheric pollution.

Envisat’s Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) can identify multiple trace gases including the pollutant nitrogen dioxide created artificially by vehicle exhausts, fossil fuel burning and heavy industry.

SCIAMACHY results tally with previous results gathered by the Global Monitoring Ozone Experiment (GOME) aboard ERS-2 since 1995, showing a steady increase in nitrogen dioxide levels in industrialised eastern China.

"For trend analyses it is important to have long time series of measurements in order to calculate a trend with enough significance," explained Dr. Ronald van der A of the Royal Dutch Meteorological Institute (KMNI). "By combining the GOME and SCIAMACHY observations we obtained a data set of nearly ten years, which was enough for our trend study. Although we had expected a positive trend in NO2 in China due to its booming economy, the magnitude of the trend, up to 25% per year for the Shanghai region was surprising."

In the west of the country the results show there are no artificial pollution sources, so that natural sources such as lightning and soil emissions are more significant.

Mariangela D’Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEM8MD808BE_environment_0.html

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>