Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Envisat monitoring China floods as part of Dragon Programme

03.08.2005


China’s rainy season has led to serious flooding in the north-east and south of the country. A joint Chinese-European team is gathering Envisat radar imagery of the developing situation to give the authorities a way to swiftly assess affected areas and plan their responses.



Summer flooding is nothing new in these regions of the People’s Republic of China (PRC), though this year it is proving particularly severe, with more than 800 casualties countrywide and 2.45 million people forced to evacuate their homes. However this season’s flooding is being monitored in near real-time by ESA’s Envisat Advanced Synthetic Aperture Radar (ASAR) sensor, which can acquire imagery in both day and night and in all weathers.

This activity is taking place as part of ESA’s Dragon Programme of cooperation with the National Remote Sensing Centre of China (NRSCC) within the Ministry of Science and Technology of the PRC. These Envisat images are a means for the authorities to identify floodwater extent and coordinate mitigation efforts, and should be a foretaste of things to come – next season the aim is that a full near real-time monitoring service should be operational.


Flood Rapid Mapping is a dedicated Dragon thematic area. A short notice acquisition and delivery procedure exists within it, enabling Chinese partners to request ASAR acquisitions ahead of the satellite overpass. The processed images are available to download from ESA servers within eight hours after acquisition.

Strasbourg-based company SERTIT, specialising in rapid satellite mapping, has been cooperating with a team of Chinese researchers led by Professor Li Jiren of the China Institute of Water Resources and Hydropower Research (IWHR) of the Ministry of Water Resources in Beijing.

"We have been working to evaluate this procedure with our Chinese partners," explained Hervé Yésou of SERTIT. "We carried out our first testing in February, then in early June we carried out a rush acquisition of Poyang Lake flooding the town of Nanchang in Jiangxi Province and the flooding of Donting Lake in Hunan Province. Envisat ASAR images acquired on 5 June were processed and disseminated on 6 June. The flood maps and images were sent to our Chinese colleagues at the IWHR as well as the National Disaster Reduction Centre of China (NDRCC) at the Ministry of Civil Affairs and other partners of the Flood Dragon project.

"Then at the end of June came a major flood of the Xijiang River that affected the town of Wuzhou in Guangxi Province. At that time both the Chinese and European teams were away at the Dragon Programme symposium in Santorini, Greece. In the event we still managed to access, process this crisis data, then present it to the symposium.

"Most recently, in mid-July, we have seen flooding of the Nenjiang River in Heilongjiang Province in northeast China, following continuous rainfall reported in the vicinity of the city of Qigihar."

Flood monitoring is only one of numerous Dragon Programme research themes, which range from agriculture and forests to seismic activity and landslide monitoring, assessing drought, air quality, oceanography and climate. Dragon formally began in April 2004. Since then more than 2500 radar images from Envisat and ESA’s ERS missions have so far been delivered to Dragon teams.

The latest Dragon Symposium took place in Santorini between 27 June and 1 July, attended by 120 scientists including 50 from PRC.

Progress and early results were reported during the event and updates were given on project teaming, including Greek scientists joining as co-investigators. Supporting in-situ data measurements required to validate satellite results were detailed and reports were made from an associated young scientist training programme.

Presentations included details of research being done into the synergistic use of ASAR with Envisat’s optical Medium Resolution Imaging Spectrometer (MERIS) and other satellite sensors for the building up of land use databases for flood disaster assessment. Also recounted was how using ASAR in multipolarisation mode improves the definition and mapping of flood extents, and the measuring of soil moisture content in the upper surface layer.

Dragon at sea

Water away from the land proved another promising thematic area, with oceanographers taking a particular interest in the China Seas.

Presentations covered how ocean colour measurements made by Envisat’s MERIS can reveal marine phytoplankton populations – important as the base of the marine food web and a key sink of carbon – as well as suspended sediment.

Researchers are building up a database of water optical properties as well as atmospheric correction for the region and developing a method of monitoring ’red tide’ events – when local conditions cause phytoplankton numbers to explode out of control. MERIS is also being used to look at the estuary of the Yangtze River, whose waters have some of the highest sediment content in the world.

Parameters of waves on the surface of the East China Sea are being studied with ASAR data, while teams are using Envisat’s heat-sensitive Advanced Along Track Scanning Radiometer (AATSR) in conjunction with ASAR and MERIS to study the Kuroshio Current, which is the Chinese equivalent of Europe’s Gulf Stream, flowing from the Philippines to northern Japan.

Dragon in the air

The air over China is also an area of interest to Dragon researchers, with satellites proving an especially useful tool for analysing trends and seasonal variations in atmospheric pollution.

Envisat’s Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) can identify multiple trace gases including the pollutant nitrogen dioxide created artificially by vehicle exhausts, fossil fuel burning and heavy industry.

SCIAMACHY results tally with previous results gathered by the Global Monitoring Ozone Experiment (GOME) aboard ERS-2 since 1995, showing a steady increase in nitrogen dioxide levels in industrialised eastern China.

"For trend analyses it is important to have long time series of measurements in order to calculate a trend with enough significance," explained Dr. Ronald van der A of the Royal Dutch Meteorological Institute (KMNI). "By combining the GOME and SCIAMACHY observations we obtained a data set of nearly ten years, which was enough for our trend study. Although we had expected a positive trend in NO2 in China due to its booming economy, the magnitude of the trend, up to 25% per year for the Shanghai region was surprising."

In the west of the country the results show there are no artificial pollution sources, so that natural sources such as lightning and soil emissions are more significant.

Mariangela D’Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEM8MD808BE_environment_0.html

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>