Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brown Grad Student’s Seismic Study Shakes Up Plate Tectonics

29.07.2005


Where even rock is weaker - Between 90 and 110 kilometers below ground, Earth’s hard shell – the lithosphere – meets the more pliable asthenosphere. The boundary between the two layers is no more than 11 kilometers thick, according to a new study.


Earth’s cool, rigid upper layer, known as the lithosphere, rides on top of its warmer, more pliable neighbor, the asthenosphere, as a series of massive plates. Plates continuously shift and break, triggering earthquakes, sparking volcanic eruptions, sculpting mountains and carving trenches under the sea.

But what, exactly, divides the lithosphere and the asthenosphere? In the latest issue of Nature, a trio of geophysicists from Brown University and the Massachusetts Institute of Technology publish research that sheds new light on the nature of the boundary between these rocky regions.

Lead author Catherine Rychert, a 26-year-old graduate student in Brown’s Department of Geological Sciences, found a sharp dividing line between the lithosphere and the asthenosphere, according to data culled from seismic sensors sprinkled across the northeastern United States and southeastern Canada. Rychert and colleagues discovered that sound waves recorded by the sensors slow considerably about 90 to 110 kilometers below ground – a sign that the rock is getting weaker and that the lithosphere is giving way to the asthenosphere. Within in a distance of a mere 11 kilometers – roughly 7 miles or less – the transition is complete.



This evidence runs contrary to the prevailing notion that the lithosphere-asthenosphere transition is a gradual one. It also points up the fact that temperature alone cannot define the boundary. Rychert said that water or a small amount of partly molten rock must also be present in the asthenosphere to cause such an abrupt change in the mechanical strength of the rock.

“These findings will be controversial because they run counter to what some scientists believe is true,” Rychert said. “Regardless, they’re pretty cool. We know something new, literally, about the earth under our feet.”

To conduct the study, Rychert gathered seismic data from hundreds of earthquakes recorded during more than five years at six government-operated or university-run research stations in Canada, New Hampshire, Massachusetts, New York and Pennsylvania. She modeled and analyzed the data with the assistance of Karen Fischer, the Royce Family Professor of Teaching Excellence and professor of geological sciences at Brown, and Stéphane Rondenay, the Kerr-McGee Assistant Professor of Seismology at MIT and a former postdoctoral research fellow at Brown. The project took three years to complete.

“We initially were very surprised by the sharpness of the lithosphere-asthenosphere boundary indicated by the data,” said Fischer, “and so I challenged Kate to prove that such a rapid transition is definitively required. All of her careful modeling has now paid off with a result that makes a fundamental contribution to our understanding of the Earth’s lithosphere.”

The Geophysics Program at the National Science Foundation funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Earth Sciences:

nachricht Sun's impact on climate change quantified for first time
27.03.2017 | Schweizerischer Nationalfonds SNF

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>