Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brown Grad Student’s Seismic Study Shakes Up Plate Tectonics

29.07.2005


Where even rock is weaker - Between 90 and 110 kilometers below ground, Earth’s hard shell – the lithosphere – meets the more pliable asthenosphere. The boundary between the two layers is no more than 11 kilometers thick, according to a new study.


Earth’s cool, rigid upper layer, known as the lithosphere, rides on top of its warmer, more pliable neighbor, the asthenosphere, as a series of massive plates. Plates continuously shift and break, triggering earthquakes, sparking volcanic eruptions, sculpting mountains and carving trenches under the sea.

But what, exactly, divides the lithosphere and the asthenosphere? In the latest issue of Nature, a trio of geophysicists from Brown University and the Massachusetts Institute of Technology publish research that sheds new light on the nature of the boundary between these rocky regions.

Lead author Catherine Rychert, a 26-year-old graduate student in Brown’s Department of Geological Sciences, found a sharp dividing line between the lithosphere and the asthenosphere, according to data culled from seismic sensors sprinkled across the northeastern United States and southeastern Canada. Rychert and colleagues discovered that sound waves recorded by the sensors slow considerably about 90 to 110 kilometers below ground – a sign that the rock is getting weaker and that the lithosphere is giving way to the asthenosphere. Within in a distance of a mere 11 kilometers – roughly 7 miles or less – the transition is complete.



This evidence runs contrary to the prevailing notion that the lithosphere-asthenosphere transition is a gradual one. It also points up the fact that temperature alone cannot define the boundary. Rychert said that water or a small amount of partly molten rock must also be present in the asthenosphere to cause such an abrupt change in the mechanical strength of the rock.

“These findings will be controversial because they run counter to what some scientists believe is true,” Rychert said. “Regardless, they’re pretty cool. We know something new, literally, about the earth under our feet.”

To conduct the study, Rychert gathered seismic data from hundreds of earthquakes recorded during more than five years at six government-operated or university-run research stations in Canada, New Hampshire, Massachusetts, New York and Pennsylvania. She modeled and analyzed the data with the assistance of Karen Fischer, the Royce Family Professor of Teaching Excellence and professor of geological sciences at Brown, and Stéphane Rondenay, the Kerr-McGee Assistant Professor of Seismology at MIT and a former postdoctoral research fellow at Brown. The project took three years to complete.

“We initially were very surprised by the sharpness of the lithosphere-asthenosphere boundary indicated by the data,” said Fischer, “and so I challenged Kate to prove that such a rapid transition is definitively required. All of her careful modeling has now paid off with a result that makes a fundamental contribution to our understanding of the Earth’s lithosphere.”

The Geophysics Program at the National Science Foundation funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Earth Sciences:

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

nachricht Collapse of the European ice sheet caused chaos
27.06.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>