Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologically produced antineutrinos provide a new window into the Earth’s interior

28.07.2005


In Jules Verne’s nineteenth century classic Journey to the Centre of the Earth, an Edinburgh professor and colleagues follow an explorer’s trail down an extinct volcano to the Earth’s core. Ah, fantasy! Here’s reality: For more than a century after Verne wrote his novel, geophysicists have had only one tool with which to peer into our planet’s heart-seismology, or analysis of vibrations produced by earthquakes and sensed by thousands of instrument stations worldwide. But now, geophysicists have a new tool for studying the Earth’s interior, reported in the July 28 issue of the journal Nature.

That tool is a gift from unlikely collaborators-physicists who study neutrinos, subatomic particles that stars spew out, and their antiparticles, called antineutrinos, which emanate from nuclear reactors and from the Earth’s interior when uranium and thorium isotopes undergo a cascade of heat-generating radioactive decay processes. A detector in Japan called KamLAND (for Kamioka liquid scintillator antineutrino detector) has sensed the geologically produced antineutrinos, known as ’’geoneutrinos.’’ This new window on the world that geoneutrinos open could yield important geophysical information, according to the Nature paper’s 87 authors from more than a dozen institutions and four nations.

’’There are still lots of theories about what’s really inside the Earth and so it’s still very much an open issue,’’ said Giorgio Gratta, a Stanford physics professor who with Stuart Freedman, a nuclear physicist with a joint appointment at the Lawrence Berkeley National Laboratory and the University of California-Berkeley, is co-spokesman for the U.S. part of the collaboration. ’’The neutrinos are a second tool, so we’re doubling the number of tools suddenly that we have, going from using only seismic waves to the point where we’re doing essentially simple-minded chemical analysis.’’



Said Freedman: ’’This is a significant scientific result. We have established that KamLAND can serve as a unique and valuable tool for the study of geoneutrinos with wide-ranging implications for physical and geochemical models of the Earth.’’

Added physics Professor Atsuto Suzuki, director of the Research Center for Neutrino Science, vice president of Tohoku University and a spokesman for the KamLAND experiment, ’’We now have a diagnostic tool for the Earth’s interior in our hands. For the first time we can say that neutrinos have a practical interest in other fields of science.’’

The Japanese Ministry of Education, Culture, Sports, Science and Technology; the Japan Society for the Promotion of Science; and the U.S. Department of Energy funded the experiment.

Receiving their doctorates as a result of work reported in the paper were two of the authors-Nikolai Tolich, a former Stanford doctoral candidate who is now a postdoctoral fellow at the Lawrence Berkeley National Laboratory, and Sanshiro Enomoto of Tohoku University.

In the dark to see the light

’’How well do we know our planet?’’ Gratta asked. ’’We have very few diagnostics. We only know essentially the crust of our planet. We can measure mountains. We can sample rocks on the surface of the Earth. We can drill holes a few kilometers deep and sample stuff down there, but in terms of chemical analysis or what kind of rocks there are, beyond a few kilometers, you simply don’t have access.’’

What scientists can learn from seismology is limited. Seismic waves travel through the planet as either compressional waves, which pulse like sound and can travel through anything, or shear waves, which wobble side-to-side like shaken jelly but cannot propagate in liquids, which cannot store the energy needed to generate side-to-side motions. These waves travel at different speeds and refract differently when they traverse the interfaces between different types of rocks. So seismology gives information about the locations of boundaries of different types of rock, Gratta said.

Geoneutrinos, in contrast, provide crude information about chemistry. ’’Essentially [geoneutrinos reveal] just the chemistry of how much uranium and how much thorium is there,’’ Gratta said. ’’You don’t know anything about the crystal structure, whether the thorium is thorium oxide or thorium nitride. But still, when you know nothing, knowing a little bit already makes a big difference. This is really the first tool to actually do this.’’

Scientists originally built KamLAND in 1997 to reproduce in the lab, using antineutrinos from nuclear reactors, what they saw in nature with solar neutrinos-the phenomenon that the three ’’flavors’’ of neutrinos/antineutrinos ’’oscillated,’’ or turned into the other flavors, as they propagated through space. They saw the same thing in both cases. Previously neutrinos were thought to lack mass, but the oscillations told them that neutrinos must have a very tiny mass-less than 500,000 times less than that of an electron, Gratta said.

’’That was a big deal because there’s lots of neutrinos in the universe, and the mass of the universe is to some extent influenced by the mass of those neutrinos,’’ Gratta said.

Unlike the energetic sun, which is a gigantic generator of neutrinos, the Earth emits only a modest number of antineutrinos-and scientists need a huge detector to be able to see them. KamLAND was built with the size and sensitivity required to detect Earth-made antineutrinos. In a cavern underneath a Japanese mountain shielding the experiment from the background noise of cosmic radiation, KamLAND consists of about 2,000 photomultiplier tubes, each 20 inches (51 centimeters) in diameter and contained in a 59-foot (18-meter) vessel, bathed in 1,000 tons of liquid scintillator.

’’Scintillator is essentially a mix of baby oil-lots of it-and benzene,’’ Gratta explained. ’’To this cocktail you add a little bit of fluorescent material. When particles interact with this cocktail, they make a little flash of light that then is recorded by light sensors. These are the photomultiplier tubes.’’

The detector sees when particles arrive and measures their energies. Nuclear reactors produce antineutrinos quickly-the detector sees about one a day. The Earth is not so prolific-the detector sees about one a month. Antineutrinos from nuclear reactors have a different energy spectrum than those from the Earth’s interior, so scientists can tell them apart. Thorium and uranium also have different energy spectra, so scientists can tell the geoneutrinos made from each apart, too.

Future possibilities

What’s next? Bigger detectors are on many scientists’ wish lists. A larger detector would allow scientists to spot an event every few days instead of one a month. Ideally, the detector would be far from nuclear reactors in a location with well-characterized surface geology. Some scientists have considered placing large detectors in mines in Australia, South Africa, Canada and South Dakota. Others favor underwater detectors near island systems such as Hawaii. ’’The ocean water would shield cosmic radiation, and the very thin oceanic crust would contribute little to the neutrino signal, giving the best sensitivity to neutrinos from deep inside the planet,’’ Gratta explained.

Norman Sleep, a Stanford geophysics professor, thinks geoneutrinos will bring his field revolution, not evolution. Radioactive heat drives plate tectonics, he said, and getting accurate ratios of thorium to uranium isotopes will help scientists better understand deep-Earth processes. The KamLAND results, while of limited statistical power, show a number of neutrinos consistent with what’s expected from existing models, the Nature authors wrote. ’’Now we’ll be able to resolve the Earth as a sphere,’’ Sleep said.

’’It’s a revolution,’’ Gratta agreed, ’’but let me temper this a little bit with the physicists’ point of view-that is, those are very difficult measurements and those detectors are very expensive and large. So before the revolution really comes to fruition, I think it’ll take some time, I would imagine one or two decades, before we have more of those detectors and maybe larger ones built in the appropriate place for geophysics.’’

Researchers from the following KamLAND collaborating institutions also participated in the study: University of Alabama, California Institute of Technology, Drexel University, University of Hawaii-Manoa, Kansas State University, Louisiana State University, University of New Mexico, University of Tennessee, Duke University, University of North Carolina-Chapel Hill, North Carolina State University, Beijing Institute of High Energy Physics, University Bordeaux I and CNRS (France).

Mark Shwartz | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>