Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovering an ecosystem beneath a collapsed Antarctic ice shelf

19.07.2005


The chance discovery of a vast ecosystem beneath the collapsed Larsen Ice Shelf will allow scientists to explore the uncharted life below Antarctica’s floating ice shelves and further probe the origins of life in extreme environments. Researchers discovered the sunless habitat after a recent underwater video study examining a deep glacial trough in the northwestern Weddell Sea following the sudden Larsen B shelf collapse in 2002.



"This is definitely the biggest thing I’ve ever been involved with in the Antarctic," said Eugene Domack, a professor at Hamilton College in New York and lead author of the report detailing the ecosystem. The article will be published in the 19 July issue of Eos, the weekly newspaper of the American Geophysical Union. "Seeing these organisms on the ocean bottom--it’s like lifting the carpet off the floor and finding a layer that you never knew was there."

Domack suggests the strong possibility that new species of marine life may be uncovered in continuing analyses of the area as ecosystem experts sample the site. The international expedition was there on a U.S. Antarctic Program cruise to study the sediment record in the area vacated by the former ice shelf. The crew recorded a video of the seafloor at the end of its mission and only later discovered a thriving clam community, mud volcanoes, and a thin layer of bacterial mats.


The discovery could provide evidence for researchers to better understand the dynamics within the inhospitable sub-ice setting, which covers more than 1.5 million square kilometers [nearly 580,000 square miles] of seafloor, or an area of the same magnitude as the Amazon basin in Brazil or the Sahara Desert. The ecosystem, known as a "cold-seep" (or cold-vent) community, is fed by chemical energy from within the Earth, unlike ecosystems that are driven by photosynthesis or hot emissions from the planet’s crust. Domack and his coauthors propose that methane from deep underwater vents likely provide the energy source capable of sustaining the chemical life at the observed 850-meter [approximately 2800-foot] depth.

Such extreme cold-vent regions have previously been found near Monterey, California, where the phenomenon was discovered in 1984, in the Gulf of Mexico, and deep within the Sea of Japan. The recent report, however, presents the first finding of the type in the Antarctic, where the near-freezing water temperatures and almost completely uncharted territory will likely provide a baseline for researchers to probe portions of the ocean floor that have been undisturbed for nearly 10,000 years. The researchers speculate, for example, that the ice shelves themselves may have played a critical role in allowing the chemical habitat to thrive on the seafloor when it otherwise might not have established itself.

Domack noted, however, that the calving of the Larsen B Shelf has opened the pristine chemical-based ecosystem to disturbances and debris that have already begun to bury the delicate mats and mollusks established within the underwater environment. He added that there may be a sense of urgency to investigate the unusual seafloor ecology below the Larsen shelf because of the likelihood of increased sediment deposition.

In addition, he suggests that the newfound system may provide incentive to launch studies to other remote undersea environments in the poles and in other glacial settings such as Lake Vostok, also in the Antarctic, to further explore the little-understood connection where ice sheets, the seafloor, and circulating water meet. The researchers indicate that the knowledge gained from any subsequent studies could enhance the examination of subterranean water on Earth or the hypothesized ocean beneath the surface on the Jovian moon Europa.

Harvey Leifert | EurekAlert!
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht AWI researchers measure a record concentration of microplastic in arctic sea ice
24.04.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Climate change in a warmer-than-modern world: New findings of Kiel Researchers
24.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>