Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kentucky Geological Survey involved in global climate change research

15.07.2005


Researchers at the Kentucky Geological Survey are studying options to reduce the amount of carbon dioxide emitted into the atmosphere. Carbon dioxide is produced by the burning of coal, gasoline, and natural gas and has been linked to global warming. Sequestration involves the injection of carbon dioxide gas captured from the burning of fossil fuels into underground geologic structures to store it rather than allow it to be released into the atmosphere. Potential geologic sites include deep saline aquifers, abandoned or depleted oil and gas reservoirs, coal beds, and organic-rich shales.



The Kentucky Geological Survey, a research and public service institute of the University of Kentucky, participated in two regional partnerships under Phase 1 of the Regional Carbon Sequestration Partnerships funded by the U.S. Department of Energy. The Survey has been informed of continued funding as part of the Phase II in three regional partnerships.

The Midwest Geological Sequestration Consortium, lead by the Illinois State Geological Survey, is studying opportunities to sequester carbon in Illinois, western Indiana, and western Kentucky. The Midwest Regional Carbon Sequestration Partnership, lead by the Battelle Institute, is studying the Appalachian and Michigan areas of the eastern and northeastern United States for sequestration options.


With these consortia, the Kentucky Geological Survey will be continuing the study of subsurface formations statewide in which carbon dioxide might be sequestered.

Another group, the Southeast Regional Carbon Sequestration Partnership is led by the Southern States Energy Board and is studying an eleven-state region from the Texas Gulf Coast to Florida. In cooperation with this consortium, the Kentucky Geological survey will investigate coals along the Virginia-Kentucky border that might be useful for sequestration and the possibility for enhanced recovery of coalbed methane that would be displaced by the injection of carbon dioxide. This process could eventually become an attractive economic incentive for carbon sequestration.

All of these studies involve identifying large point sources of carbon emissions, assessing terrestrial and geologic opportunities for carbon storage, examining transportation issues, and evaluating public health and safety.

In Phase II research, pilot projects to test underground storage concepts will be initiated. In a separate project, the Kentucky Geological Survey has recently received U.S. Department of Energy funding to gather data on the amount of carbon dioxide and other gases that naturally migrate between soils and the atmosphere. These background data will be useful for monitoring geologic storage sites. The data collected will enable investigators to distinguish natural changes in carbon dioxide concentrations from potential surface seeps that could occur when carbon dioxide is injected underground for storage.

Other ongoing research at the Survey indicates natural gas production may be enhanced by injection and sequestration of carbon dioxide into organic-rich gas shales. On this topic, research is now focused on studying the efficiency and practicality of this carbon dioxide storage opportunity. Estimates compiled to date indicate that the geologic formations in Kentucky could theoretically sequester up to 33 billion metric tons of carbon dioxide. These new research efforts will help to refine our knowledge and determine which formations will actually be suitable for such uses.

For more information on this research by the Kentucky Geological Survey, see http://www.mrcsp.org, http://www.secarbon.org, http://www.sequestration.org, and http://www.uky.edu/KGS/emsweb/devsh/devshseq.html or contact Jim Drahovzal, drahovzal@uky.edu.

Ralph Derickson | EurekAlert!
Further information:
http://www.uky.edu

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>