Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kentucky Geological Survey involved in global climate change research

15.07.2005


Researchers at the Kentucky Geological Survey are studying options to reduce the amount of carbon dioxide emitted into the atmosphere. Carbon dioxide is produced by the burning of coal, gasoline, and natural gas and has been linked to global warming. Sequestration involves the injection of carbon dioxide gas captured from the burning of fossil fuels into underground geologic structures to store it rather than allow it to be released into the atmosphere. Potential geologic sites include deep saline aquifers, abandoned or depleted oil and gas reservoirs, coal beds, and organic-rich shales.



The Kentucky Geological Survey, a research and public service institute of the University of Kentucky, participated in two regional partnerships under Phase 1 of the Regional Carbon Sequestration Partnerships funded by the U.S. Department of Energy. The Survey has been informed of continued funding as part of the Phase II in three regional partnerships.

The Midwest Geological Sequestration Consortium, lead by the Illinois State Geological Survey, is studying opportunities to sequester carbon in Illinois, western Indiana, and western Kentucky. The Midwest Regional Carbon Sequestration Partnership, lead by the Battelle Institute, is studying the Appalachian and Michigan areas of the eastern and northeastern United States for sequestration options.


With these consortia, the Kentucky Geological Survey will be continuing the study of subsurface formations statewide in which carbon dioxide might be sequestered.

Another group, the Southeast Regional Carbon Sequestration Partnership is led by the Southern States Energy Board and is studying an eleven-state region from the Texas Gulf Coast to Florida. In cooperation with this consortium, the Kentucky Geological survey will investigate coals along the Virginia-Kentucky border that might be useful for sequestration and the possibility for enhanced recovery of coalbed methane that would be displaced by the injection of carbon dioxide. This process could eventually become an attractive economic incentive for carbon sequestration.

All of these studies involve identifying large point sources of carbon emissions, assessing terrestrial and geologic opportunities for carbon storage, examining transportation issues, and evaluating public health and safety.

In Phase II research, pilot projects to test underground storage concepts will be initiated. In a separate project, the Kentucky Geological Survey has recently received U.S. Department of Energy funding to gather data on the amount of carbon dioxide and other gases that naturally migrate between soils and the atmosphere. These background data will be useful for monitoring geologic storage sites. The data collected will enable investigators to distinguish natural changes in carbon dioxide concentrations from potential surface seeps that could occur when carbon dioxide is injected underground for storage.

Other ongoing research at the Survey indicates natural gas production may be enhanced by injection and sequestration of carbon dioxide into organic-rich gas shales. On this topic, research is now focused on studying the efficiency and practicality of this carbon dioxide storage opportunity. Estimates compiled to date indicate that the geologic formations in Kentucky could theoretically sequester up to 33 billion metric tons of carbon dioxide. These new research efforts will help to refine our knowledge and determine which formations will actually be suitable for such uses.

For more information on this research by the Kentucky Geological Survey, see http://www.mrcsp.org, http://www.secarbon.org, http://www.sequestration.org, and http://www.uky.edu/KGS/emsweb/devsh/devshseq.html or contact Jim Drahovzal, drahovzal@uky.edu.

Ralph Derickson | EurekAlert!
Further information:
http://www.uky.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>