Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Get a Real "Rise" Out of Breakthroughs in How We Understand Changes in Sea Level

11.07.2005


For the first time, researchers have the tools and expertise to understand the rate at which sea level is changing and the mechanisms that drive that change.


Oceans change. Beyond merely the sloshing of waves that we all recognize along the beaches of the world, sea level describes a complex array of conditions, from chemistry to temperature to changes in the shape of the basins that hold the world’s water. In this visualization, we look at changes in sea level measured from space using data from the TOPEX/Poseidon and Jason satellites. Credit: NASA


While space based measurements are the only way to accurately measure global ocean conditions, complimentary measurements can be taken from floats distributed around the world. The Argo project, an international mission, will launch 3000 floats, which will deliver salinity, column temperature, and current velocity information. Detail of one of the buoys. Credit: NASA



Sea levels rise and fall as oceans warm and cool and as ice on land grows and shrinks. Other factors that contribute to sea level change are the amount of water stored in lakes and reservoirs and the rising and falling of land in coastal regions.

"From the Mississippi Delta to the Maldives Islands off the coast of India to the multitude of other low-lying coastal areas around the world, it’s estimated that over 100 million lives are potentially impacted by a three-foot increase in sea level," said Dr. Waleed Abdalati, head of the Cryospheric Sciences Branch at NASA’s Goddard Space Flight Center, Greenbelt, Md. "This is an ideal time, during the midst of an historic year of both related natural events and research developments tied to this critical global issue, to talk to the public about whether ice in our polar regions is truly melting, whether our oceans are indeed rising faster, and what these changes may mean to us."


NASA is taking advantage of its unique space-based satellite observations of Earth’s oceans and atmosphere, in combination with satellite observations and sea surface measurements from domestic and international partners, to learn more about why and how the world’s waters are rising. In doing so, the agency is hoping to determine more about factors leading to sea level change, indicators of change such as ocean expansion, changes in ice, impoundment of water, and movement of Earth and coastal regions, and how the latest research developments contribute to our knowledge of sea level rise.

NASA is working with NOAA, the National Science Foundation, and others to explore and understand sea level change -- to tell the story of what is happening. NASA focuses on developing ways to look at sea level change using data from NASA satellites and aircraft instruments, as well as ground and air observations and ocean measurements from partners.

NASA satellite missions devoted to sea level research include: the Gravity Recovery And Climate Experiment (GRACE), which maps Earth’s gravitational field with precision and resolution, and whose data helps us better understand movement of water throughout the Earth; the Ocean TOPography Experiment (TOPEX/Poseidon), a joint U.S./French satellite that uses radar to map the precise features of the oceans’ surface; Jason, which measures ocean height and monitors ocean circulation; and the Ice, Cloud and Land Elevation Satellite (ICESat), whose primary purpose is to study the mass of polar ice sheets and their contributions to global sea level change.

According to Dr. Laury Miller, Chief of the NOAA Laboratory for Satellite Altimetry in Washington, the big news that has emerged over the past few years is that the rate of 20th Century sea level rise is about two millimeters per year and that only a quarter of this is due to expansion caused by warming of the oceans. This provides an important context for these recent observations.

“We’ve found that the largest likely factor for sea level rise is changes in the amount of ice that covers Earth. Three-fourths of the planet’s freshwater is stored in glaciers and ice sheets, or about 220 feet of sea level," said Dr. Eric Rignot, Principal Scientist for the Radar Science and Engineering Section at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. Research results by Rignot and partners, published in an October 2004 article in Science Magazine, further offer evidence that ice cover is shrinking much faster than thought, with over half of recent sea level rise due to the melting of ice from Greenland, West Antarctica’s Amundsen Sea, and mountain glaciers.

The latest sea level research conducted by Dr. Steve Nerem, Associate Professor, Colorado Center for Astrodynamics Research at the University of Colorado in Boulder, and his colleagues, published in a 2004 issue of Marine Geodesy Journal, has found that recent TOPEX/Poseidon and Jason satellite observations show an average increase in global mean sea level of three millimeters a year from 1993-2005. This rate is more than 50 percent greater than the average rate of the last 50 years.

"Now the challenge is to develop an even deeper understanding of what is responsible for sea level rise and to monitor for possible future changes. That’s where NASA’s satellites come in with global coverage, and ability to examine the many factors involved," said Miller.

Gretchen Cook-Anderson | EurekAlert!
Further information:
http://www.nasa.gov/vision/earth/environment/sealevel_feature.html

More articles from Earth Sciences:

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

nachricht New research unlocks forests' potential in climate change mitigation
21.04.2017 | Clemson University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>