Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Get a Real "Rise" Out of Breakthroughs in How We Understand Changes in Sea Level

11.07.2005


For the first time, researchers have the tools and expertise to understand the rate at which sea level is changing and the mechanisms that drive that change.


Oceans change. Beyond merely the sloshing of waves that we all recognize along the beaches of the world, sea level describes a complex array of conditions, from chemistry to temperature to changes in the shape of the basins that hold the world’s water. In this visualization, we look at changes in sea level measured from space using data from the TOPEX/Poseidon and Jason satellites. Credit: NASA


While space based measurements are the only way to accurately measure global ocean conditions, complimentary measurements can be taken from floats distributed around the world. The Argo project, an international mission, will launch 3000 floats, which will deliver salinity, column temperature, and current velocity information. Detail of one of the buoys. Credit: NASA



Sea levels rise and fall as oceans warm and cool and as ice on land grows and shrinks. Other factors that contribute to sea level change are the amount of water stored in lakes and reservoirs and the rising and falling of land in coastal regions.

"From the Mississippi Delta to the Maldives Islands off the coast of India to the multitude of other low-lying coastal areas around the world, it’s estimated that over 100 million lives are potentially impacted by a three-foot increase in sea level," said Dr. Waleed Abdalati, head of the Cryospheric Sciences Branch at NASA’s Goddard Space Flight Center, Greenbelt, Md. "This is an ideal time, during the midst of an historic year of both related natural events and research developments tied to this critical global issue, to talk to the public about whether ice in our polar regions is truly melting, whether our oceans are indeed rising faster, and what these changes may mean to us."


NASA is taking advantage of its unique space-based satellite observations of Earth’s oceans and atmosphere, in combination with satellite observations and sea surface measurements from domestic and international partners, to learn more about why and how the world’s waters are rising. In doing so, the agency is hoping to determine more about factors leading to sea level change, indicators of change such as ocean expansion, changes in ice, impoundment of water, and movement of Earth and coastal regions, and how the latest research developments contribute to our knowledge of sea level rise.

NASA is working with NOAA, the National Science Foundation, and others to explore and understand sea level change -- to tell the story of what is happening. NASA focuses on developing ways to look at sea level change using data from NASA satellites and aircraft instruments, as well as ground and air observations and ocean measurements from partners.

NASA satellite missions devoted to sea level research include: the Gravity Recovery And Climate Experiment (GRACE), which maps Earth’s gravitational field with precision and resolution, and whose data helps us better understand movement of water throughout the Earth; the Ocean TOPography Experiment (TOPEX/Poseidon), a joint U.S./French satellite that uses radar to map the precise features of the oceans’ surface; Jason, which measures ocean height and monitors ocean circulation; and the Ice, Cloud and Land Elevation Satellite (ICESat), whose primary purpose is to study the mass of polar ice sheets and their contributions to global sea level change.

According to Dr. Laury Miller, Chief of the NOAA Laboratory for Satellite Altimetry in Washington, the big news that has emerged over the past few years is that the rate of 20th Century sea level rise is about two millimeters per year and that only a quarter of this is due to expansion caused by warming of the oceans. This provides an important context for these recent observations.

“We’ve found that the largest likely factor for sea level rise is changes in the amount of ice that covers Earth. Three-fourths of the planet’s freshwater is stored in glaciers and ice sheets, or about 220 feet of sea level," said Dr. Eric Rignot, Principal Scientist for the Radar Science and Engineering Section at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. Research results by Rignot and partners, published in an October 2004 article in Science Magazine, further offer evidence that ice cover is shrinking much faster than thought, with over half of recent sea level rise due to the melting of ice from Greenland, West Antarctica’s Amundsen Sea, and mountain glaciers.

The latest sea level research conducted by Dr. Steve Nerem, Associate Professor, Colorado Center for Astrodynamics Research at the University of Colorado in Boulder, and his colleagues, published in a 2004 issue of Marine Geodesy Journal, has found that recent TOPEX/Poseidon and Jason satellite observations show an average increase in global mean sea level of three millimeters a year from 1993-2005. This rate is more than 50 percent greater than the average rate of the last 50 years.

"Now the challenge is to develop an even deeper understanding of what is responsible for sea level rise and to monitor for possible future changes. That’s where NASA’s satellites come in with global coverage, and ability to examine the many factors involved," said Miller.

Gretchen Cook-Anderson | EurekAlert!
Further information:
http://www.nasa.gov/vision/earth/environment/sealevel_feature.html

More articles from Earth Sciences:

nachricht Turning the Climate Tide by 2020
29.06.2017 | Potsdam-Institut für Klimafolgenforschung

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

New Headlamp Dimension: Fully Adaptive Light Distribution in Real Time

29.06.2017 | Automotive Engineering

Turning the Climate Tide by 2020

29.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>