Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Offers A Real-Time 3-D Look At The Inside Of Hurricanes

11.07.2005


The image on the left shows the intensity of rainfall in a tropical cyclone. The colorbar above the image shows millimeters of rainfall per hour, with reds being the heaviest rainfall. The image on the right shows a 3-D structure of rain in tropical cyclones. The highest cloud tower on the image reaches 10 kilometers (6.2 miles) high. Credit: NASA


TRMM captured Hurricane Ivan as it made landfall on September 16, 2004. Ivan affected Alabama, Florida, Lousianna, and Georgia. TRMM sees the rain (through the clouds). Blue areas have at least 0.25 inches of rain per hour(hr). Green shows 0.5 inches; yellow, at least 1.0 inch, and Red shows the most intense rains where over 2.0 inches/hr. were recorded. Credit: NASA


Seeing how rain falls from top to bottom and how heavy the rain falls throughout parts of a tropical cyclone is very important to hurricane forecasters. NASA has sped up the process of getting this data within three hours, and making it appear in 3-D. The new process now gives information quickly enough for forecasters to use.

Scientists at NASA have developed a way to process radar data from NASA and the Japan Aerospace Exploration Agency’s (JAXA) Tropical Rainfall Measuring Mission (TRMM) satellite that can help with forecasting changes in a hurricane’s intensity.

"What’s important is that the vertical rain structure data used to take a longer time to process," said Jeffrey Halverson, Meteorologist and TRMM Education and Outreach Scientist. With hurricane forecasts, events change quickly, and meteorologists need data as fast as possible. This new process gives them data within three hours from the time the satellite has flown over a tropical cyclone."



TRMM is a unique satellite that is able to estimate rainfall measurements from space, and rainfall is a key ingredient in hurricanes. For example, heaviest concentrations of rainfall for example are found around the eye or center of the hurricane. Scientists can tell, based on if the rain is getting stronger or weaker, whether or not the hurricane is strengthening or weakening.

In 2004, research confirmed that when larger towering clouds reach a certain height surrounding the hurricane’s open eye, in what is called the "eye-wall," they can be associated with a strengthening storm. TRMM can identify these "hot towers" of piled up clouds and cam help make forecasts more accurate.

Because the TRMM satellite covers the tropical areas of the entire globe, the Precipitation Radar (PR) instrument takes snapshots of storms as it passes by. Every time it passes over a named tropical cyclone anywhere in the world, the PR will send data to create these 3-D "snapshots" of the storms.

The hurricane snapshot will show forecasters information on how heavy the rain is falling from different parts of the storm, such as the in eye-wall versus the outer rainbands, for example. It also gives a 3-D look at the cloud heights and "hot towers" inside the storm. Higher hot towers around the eye usually indicate a strengthening storm.

The snapshot also gives valuable information about how the storm is put together. For example, when scientists studying a snapshot see that the body of the hurricane may be tilted inward to the hot towers, it could give clues as to whether a wind shear, or a sudden change in direction of winds near the top of the storm, may impact the storm’s strength. Normally, when a hurricane runs into a strong wind shear, it weakens.

Forecasters and the general public can access the data and look into the eye of a storm by going to the TRMM website. "We hope this new data product will help the community to better assess the structure and intensity of tropical cyclones," Halverson said.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/vision/earth/lookingatearth/trmm_3D.html
http://trmm.gfsc.nasa.gov
http://www.gsfc.nasa.gov

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>