Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Offers A Real-Time 3-D Look At The Inside Of Hurricanes

11.07.2005


The image on the left shows the intensity of rainfall in a tropical cyclone. The colorbar above the image shows millimeters of rainfall per hour, with reds being the heaviest rainfall. The image on the right shows a 3-D structure of rain in tropical cyclones. The highest cloud tower on the image reaches 10 kilometers (6.2 miles) high. Credit: NASA


TRMM captured Hurricane Ivan as it made landfall on September 16, 2004. Ivan affected Alabama, Florida, Lousianna, and Georgia. TRMM sees the rain (through the clouds). Blue areas have at least 0.25 inches of rain per hour(hr). Green shows 0.5 inches; yellow, at least 1.0 inch, and Red shows the most intense rains where over 2.0 inches/hr. were recorded. Credit: NASA


Seeing how rain falls from top to bottom and how heavy the rain falls throughout parts of a tropical cyclone is very important to hurricane forecasters. NASA has sped up the process of getting this data within three hours, and making it appear in 3-D. The new process now gives information quickly enough for forecasters to use.

Scientists at NASA have developed a way to process radar data from NASA and the Japan Aerospace Exploration Agency’s (JAXA) Tropical Rainfall Measuring Mission (TRMM) satellite that can help with forecasting changes in a hurricane’s intensity.

"What’s important is that the vertical rain structure data used to take a longer time to process," said Jeffrey Halverson, Meteorologist and TRMM Education and Outreach Scientist. With hurricane forecasts, events change quickly, and meteorologists need data as fast as possible. This new process gives them data within three hours from the time the satellite has flown over a tropical cyclone."



TRMM is a unique satellite that is able to estimate rainfall measurements from space, and rainfall is a key ingredient in hurricanes. For example, heaviest concentrations of rainfall for example are found around the eye or center of the hurricane. Scientists can tell, based on if the rain is getting stronger or weaker, whether or not the hurricane is strengthening or weakening.

In 2004, research confirmed that when larger towering clouds reach a certain height surrounding the hurricane’s open eye, in what is called the "eye-wall," they can be associated with a strengthening storm. TRMM can identify these "hot towers" of piled up clouds and cam help make forecasts more accurate.

Because the TRMM satellite covers the tropical areas of the entire globe, the Precipitation Radar (PR) instrument takes snapshots of storms as it passes by. Every time it passes over a named tropical cyclone anywhere in the world, the PR will send data to create these 3-D "snapshots" of the storms.

The hurricane snapshot will show forecasters information on how heavy the rain is falling from different parts of the storm, such as the in eye-wall versus the outer rainbands, for example. It also gives a 3-D look at the cloud heights and "hot towers" inside the storm. Higher hot towers around the eye usually indicate a strengthening storm.

The snapshot also gives valuable information about how the storm is put together. For example, when scientists studying a snapshot see that the body of the hurricane may be tilted inward to the hot towers, it could give clues as to whether a wind shear, or a sudden change in direction of winds near the top of the storm, may impact the storm’s strength. Normally, when a hurricane runs into a strong wind shear, it weakens.

Forecasters and the general public can access the data and look into the eye of a storm by going to the TRMM website. "We hope this new data product will help the community to better assess the structure and intensity of tropical cyclones," Halverson said.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/vision/earth/lookingatearth/trmm_3D.html
http://trmm.gfsc.nasa.gov
http://www.gsfc.nasa.gov

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>