Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A new discovery helps us to understand the complex nature of earthquakes


Álvaro Corral, a physicist at the Universitat Autònoma de Barcelona, has discovered that the structure of the recurrence time of earthquakes, which is the time interval between successive earthquakes, is similar to the spatial structure of physics systems when they change phase in the “critical points”. The research has been published in Physical Review Letters and shows that the time interval between successive earthquakes depends on the time that elapsed between previous earthquakes. Although this is dependent upon statistics, the discovery may help to improve risk estimation.

Examples of critical phenomena in nature include when water changes state, moving from liquid to gaseous form, and when a magnet is at the critical point, where it loses its magnetism because of the high temperature. In the second example the magnet has a property that exists only at the moment when it changes state. This property is called self-similarity at different scales. When the temperature is below the critical point, the microscopic magnets that form the magnetic fields are well ordered and point mainly all in the same direction. When the temperature rises above the critical point, everything becomes chaotic, each microscopic magnet points in a random direction, and there is no global magnetic field. When the temperature is at the critical point, on the borderline, the microscopic magnets that point in the same direction are grouped together in small clusters. If we step back and look at a larger area, we see that these clusters are grouped also in clusters of clusters, and the same thing occurs each time we look at a larger area. This is what is meant by self-similarity at different scales.

The discovery made by the UAB researcher is that this self-similarity at different scales also occurs in the time intervals between earthquakes. This means that if we note the different earthquakes that have taken place in a given zone over a large period of time, we see that they are grouped together, but the most surprising thing is that if we look at a longer period of time, the groups of earthquakes are themselves also grouped in larger clusters. And the same happens for any period of time, for earthquakes of any magnitude, wherever they take place in the world. This has a fundamental implication on the type of phenomenon that earthquakes are. Rather than being chaotic, as one might think, we can consider them to be critical.

As Corral confirmed, “for this self-similar structure to exist, the role of correlations between earthquakes must be very important, that is, the interval between earthquakes must be dependant on previous earthquakes in a very determined way.” Dr. Corral clarified by saying “This does not mean that this dependence is determinist; it does not allow us to predict when the next earthquake will occur, but there is a clear statistical dependence that may help to improve risk estimation.”

| alfa
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>