Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geological finding shows Mars to be a complex planet that continues to evolve

07.07.2005


Mars is a rocky planet with an ancient volcanic past, but new findings show the planet is more complex and active than previously believed – at least in certain places. Finding those places, however, turns out to be trickier than just looking at landforms like river valleys or lakebeds or searching for specific minerals.



"Context is everything," said Philip Christensen, Principal Investigator for the Thermal Emission Spectrometer (TES) on Mars Global Surveyor and for the Thermal Emission Imaging System (THEMIS) on Mars Odyssey, as well as lead scientist for the Mini-TES instruments on the Mars Exploration Rovers. "There has been a lot of excitement about finding specific features or minerals, but THEMIS, together with the TES infrared spectrometer, is giving us an overview by finding all the minerals. It gives us context – the underlying geology of the place."

A paper led by Christensen, to be released online by the journal Nature on July 6, describes how a detailed examination of the Red Planet’s surface minerals using THEMIS and TES data yields surprising results in certain localized areas.


While the current rover missions have largely proved that in the distant past Mars may have had a lake or two, several different orbital mapping missions have found a basalt-rich planet that is the product of an ancient volcanic history. Geologically, it seems like a simple planet in the large scale – but then there are local windows showing far more complexity.

"From what we have seen to date, you might imagine going to Mars and seeing nothing but basalt," said Christensen. "The evidence has always shown that the planet was active early, made some big volcanoes and then shut down and that was that. But when we looked more carefully we saw that there are these other places…When you look at the geology in the right spots, there is as much diversity in the rocks as you see on Earth.

"Once you get a glimpse of this complexity, you realize that there is a very complex world underneath that veneer of basalt."

What Christensen and team found were localized deposits showing a distribution of igneous mineral types rivaling the range of minerals found on Earth – from primitive volcanic rocks like olivine-rich basalts to highly processed silica-rich rocks like granites.

The diversity of igneous minerals is important, Christensen explains, because it implies that the surface rocks have continued to be processed and reconstituted multiple times over an extended period of time.

"You melt the mantle and you get olivine basalts; you melt them again and you get basalt; you melt that and you make andesite; you melt that and you make dacite; you melt that and you make granite," said Christensen. "Every time you re-melt a rock, the first thing to come off is the silica, so each time you melt it, you’re refining the silica."

On Earth, such mineral evolution generally occurs as primitive volcanic rocks get folded back into the planet’s crust, re-melted and refined as faster melting components like silica separate out of the original material – a process known as mineral fractionation.

Mars, unlike Earth, does not have moving plates recycling the planet’s crust. However, Christensen’s results show that, like Earth, Mars has evolved and may still be evolving beneath the surface.

"Mars is a more complicated planet than we thought – the geology has kept chugging along and evolving over time," Christensen said. "Though they’re not widespread, we’ve found dacite, and we’ve found granite. One way to make these granites is to make a whole volcano stacked up out of basalt – it gets tall enough and you begin to remelt the stuff deep down, and when you remelt the basalt, you can have granites forming.

"These are fairly small occurrences. On Earth, we have mountain ranges made of granite, on Mars we have so far only found a couple of globs. It’s not like the Earth in the extent of this geological evolution, but Mars is like the Earth in localized situations. It’s been hidden from us, but it’s a sophisticated, evolving planet after all," he said.

Because the areas where the evolved igneous rocks occur are small, it has taken the high-resolution multispectral camera in Mars Odyssey’s THEMIS instrument (with a resolution of 100 meters) to find the minerals from orbit by finding a specific infrared signature in specific landforms. THEMIS’s mineral mapping has been 1500 times more detailed than TES’s, though the TES instrument’s infrared spectrometer (with a resolution of 3 kilometers) detects a much more detailed range of infrared emissions, making it more sensitive to different mineral compositions.

"We’re doing the thing that we set out to do: mapping the composition at mesoscales," Christensen noted. "THEMIS identifies the area, then we go back and find what may be just a single, over-looked TES pixel and analyze it. The two were really planned to work together and that’s exactly what we’ve been doing. We use these two instruments in a synergistic way and together they’re perfect."

Though Mars mapping has been going on for many years, Christensen notes that some of the most interesting places on the planet have yet to be identified and explored.

"If you drained the Earth’s oceans and looked at it from space, you would probably reach the same conclusion – a quiet, basaltic planet," he said. "But then, if you searched carefully, you might find Yellowstone and realize that there was a lot going on below the surface of the planet that you weren’t aware of. We’re at that stage now in looking at Mars."

James Hathaway | EurekAlert!
Further information:
http://www.asu.edu
http://mars.jpl.nasa.gov/odyssey/

More articles from Earth Sciences:

nachricht Turning the Climate Tide by 2020
29.06.2017 | Potsdam-Institut für Klimafolgenforschung

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>