Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Are aerosols reducing coastal drizzle and increasing cloud cover?


Mobile atmospheric lab gathering climate data

Scientists sponsored by the Department of Energy are conducting a six-month atmospheric research campaign at the Point Reyes National Seashore, in Marin County, California. The experiment’s goal is to help researchers understand how aerosols --small particles such as soot, dust and smoke--influence the structure of marine stratus clouds, and how aerosols are associated with drizzle – the misty rain regularly produced by these types of clouds. The scientists think aerosols, which can come from both natural and manmade sources, may be reducing coastal drizzle while increasing cloud cover.

Marine stratus clouds are thin, low-level clouds that cover the sky like a blanket. They are some of the most prevalent clouds on earth, and are an important component of the earth’s climate system. Despite their importance to the earth-ocean-atmosphere system, relatively few comprehensive data sets about marine stratus clouds are available for scientists to draw firm conclusions related to aerosol effects. To obtain more, and better, data, researchers need to go to the source. The department’s Atmospheric Radiation Measurement (ARM) Program is helping them do just that.

Since the Pt. Reyes field campaign began in March, a new $1.4 million ARM Mobile Facility – a portable atmospheric laboratory with sophisticated instruments and data systems – has been stationed about one mile from the beach, collecting data from the clouds as they move onshore.

Starting in July, activities intensify as two research aircraft --sponsored by DOE’s Atmospheric Science Program and the U.S. Office of Naval Research--join the campaign. These instrumented aircraft will obtain in-situ measurements of cloud properties, suspended particles and other atmospheric variables needed to analyze aerosol properties of the marine stratus clouds. The aircraft data will be used to examine the regional characteristics of the marine stratus clouds being sampled at Pt. Reyes and to examine specific links between aerosol chemistry and cloud structure.

"Current theories--backed by sparse observations--suggest that the presence of manmade aerosol air pollution may cause marine stratus clouds to reflect more incoming sunlight back into space and suppress the production of drizzle within the clouds, which may enable the clouds to exist for a longer period," said Mark Miller, the ARM Program’s lead scientist for this field campaign. "If these theories prove accurate, manmade aerosols could be facilitating changes in regional and global climate through their influence on marine cloud structure. We need to determine how these effects should be represented in global climate simulations."

"With the new ARM Mobile Facility, researchers can now explore previously under-sampled climate regions," said Dr. Raymond Orbach, Director of DOE’s Office of Science. "The portability of the instrumentation allows researchers to make atmospheric measurements similar to those at the other ARM sites for periods up to a year at a time anywhere in the world."

Point Reyes National Seashore, on the coast north of San Francisco, is an ideal place to gather data about marine cloud and drizzle processes. Not only is it one of the foggiest spots in the United States, it’s also home to more than 900 plant species, 490 bird species, and 28 species of reptiles and amphibians.

"It’s no secret that fragile coastal ecosystems are highly sensitive to changes in their environment. A mere three degree change in temperature for an extended period of time can wipe out an entire segment of marine life," said Don Neubacher, Point Reyes National Seashore Superintendent. "Anytime we have the opportunity to assist the scientific community in researching issues that affect our biological communities, we will."

The ARM Program - the largest global change research program supported by the Department of Energy - was created to help resolve scientific uncertainties related to global climate change. Its specific focus is on the crucial role of clouds and their influence on warming and cooling processes in the atmosphere. The program’s goal is to improve the treatment of clouds and radiation processes in global climate models. One of DOE’s major goals is to develop global climate models capable of simulating the timing and magnitude of greenhouse gas-induced global warming and the regional effects of such warming. Previous research has shown that warming and cooling effects from clouds are one of the major sources of uncertainty in simulations of climate change over the next century. It is imperative, therefore, that their treatment in global models be improved.

The multi-laboratory ARM program operates three field research sites gathering climate data in the North Slope of Alaska, the Southern Great Plains and the Tropical Western Pacific.

The new Mobile Facility will enable atmospheric scientists to perform climate research in remote locations around the world. Next year, the ARM Mobile Facility will be deployed in Niamey, Niger, Africa to participate in an international study of the West African monsoon system.

Jeff Sherwood | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>