Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are aerosols reducing coastal drizzle and increasing cloud cover?

01.07.2005


Mobile atmospheric lab gathering climate data



Scientists sponsored by the Department of Energy are conducting a six-month atmospheric research campaign at the Point Reyes National Seashore, in Marin County, California. The experiment’s goal is to help researchers understand how aerosols --small particles such as soot, dust and smoke--influence the structure of marine stratus clouds, and how aerosols are associated with drizzle – the misty rain regularly produced by these types of clouds. The scientists think aerosols, which can come from both natural and manmade sources, may be reducing coastal drizzle while increasing cloud cover.

Marine stratus clouds are thin, low-level clouds that cover the sky like a blanket. They are some of the most prevalent clouds on earth, and are an important component of the earth’s climate system. Despite their importance to the earth-ocean-atmosphere system, relatively few comprehensive data sets about marine stratus clouds are available for scientists to draw firm conclusions related to aerosol effects. To obtain more, and better, data, researchers need to go to the source. The department’s Atmospheric Radiation Measurement (ARM) Program is helping them do just that.


Since the Pt. Reyes field campaign began in March, a new $1.4 million ARM Mobile Facility – a portable atmospheric laboratory with sophisticated instruments and data systems – has been stationed about one mile from the beach, collecting data from the clouds as they move onshore.

Starting in July, activities intensify as two research aircraft --sponsored by DOE’s Atmospheric Science Program and the U.S. Office of Naval Research--join the campaign. These instrumented aircraft will obtain in-situ measurements of cloud properties, suspended particles and other atmospheric variables needed to analyze aerosol properties of the marine stratus clouds. The aircraft data will be used to examine the regional characteristics of the marine stratus clouds being sampled at Pt. Reyes and to examine specific links between aerosol chemistry and cloud structure.

"Current theories--backed by sparse observations--suggest that the presence of manmade aerosol air pollution may cause marine stratus clouds to reflect more incoming sunlight back into space and suppress the production of drizzle within the clouds, which may enable the clouds to exist for a longer period," said Mark Miller, the ARM Program’s lead scientist for this field campaign. "If these theories prove accurate, manmade aerosols could be facilitating changes in regional and global climate through their influence on marine cloud structure. We need to determine how these effects should be represented in global climate simulations."

"With the new ARM Mobile Facility, researchers can now explore previously under-sampled climate regions," said Dr. Raymond Orbach, Director of DOE’s Office of Science. "The portability of the instrumentation allows researchers to make atmospheric measurements similar to those at the other ARM sites for periods up to a year at a time anywhere in the world."

Point Reyes National Seashore, on the coast north of San Francisco, is an ideal place to gather data about marine cloud and drizzle processes. Not only is it one of the foggiest spots in the United States, it’s also home to more than 900 plant species, 490 bird species, and 28 species of reptiles and amphibians.

"It’s no secret that fragile coastal ecosystems are highly sensitive to changes in their environment. A mere three degree change in temperature for an extended period of time can wipe out an entire segment of marine life," said Don Neubacher, Point Reyes National Seashore Superintendent. "Anytime we have the opportunity to assist the scientific community in researching issues that affect our biological communities, we will."

The ARM Program - the largest global change research program supported by the Department of Energy - was created to help resolve scientific uncertainties related to global climate change. Its specific focus is on the crucial role of clouds and their influence on warming and cooling processes in the atmosphere. The program’s goal is to improve the treatment of clouds and radiation processes in global climate models. One of DOE’s major goals is to develop global climate models capable of simulating the timing and magnitude of greenhouse gas-induced global warming and the regional effects of such warming. Previous research has shown that warming and cooling effects from clouds are one of the major sources of uncertainty in simulations of climate change over the next century. It is imperative, therefore, that their treatment in global models be improved.

The multi-laboratory ARM program operates three field research sites gathering climate data in the North Slope of Alaska, the Southern Great Plains and the Tropical Western Pacific.

The new Mobile Facility will enable atmospheric scientists to perform climate research in remote locations around the world. Next year, the ARM Mobile Facility will be deployed in Niamey, Niger, Africa to participate in an international study of the West African monsoon system.

Jeff Sherwood | EurekAlert!
Further information:
http://www.hq.doe.gov

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>