Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warmer air may cause increased Antarctic sea ice cover

30.06.2005


Predicted increases in precipitation due to warmer air temperatures from greenhouse gas emissions may actually increase sea ice volume in the Antarctic’s Southern Ocean. This finding from a new study adds evidence of potential asymmetry between the two poles and may be an indication that climate change processes may have varying impacts on different areas of the globe.



"Most people have heard of climate change and how rising air temperatures are melting glaciers and sea ice in the Arctic," said Dylan C. Powell, lead author of the paper and a doctoral candidate at the University of Maryland Baltimore County. "However, findings from our simulations suggest a counterintuitive phenomenon. Some of the melt in the Arctic may be balanced by increases in sea ice volume in the Antarctic."

For the first time, the authors of the paper, published this month in the Journal of Geophysical Research (Oceans), used satellite observations from NASA’s Special Sensor Microwave/Imager to assess snow depth on sea ice and assimilated the satellite observations into their model to improve prediction of precipitation rates. By incorporating satellite observations into this new method, the researchers say they achieved more stable and realistic precipitation data, to counter the great variability in precipitation data sets typically found in the polar regions.


"On any given day, sea ice cover in the oceans of the polar regions is about the size of the U.S.," said Thorsten Markus, a co-author of the paper and a research scientist at NASA’s Goddard Space Flight Center. "Far-flung locations like the Arctic and Antarctic actually impact our temperature and climate where we live and work on a daily basis."

According to Markus, the deep and bottom water masses of the oceans make contact with the atmosphere only at high latitudes, near the poles. Polar processes, such as sea ice formation, are driving a huge, global, ocean heat pump, called thermohaline (or saline) circulation. To a large extent, this heat pump impacts the climate at lower latitudes.

Typically, warming of the climate leads to increased melting rates of sea ice cover and also increased precipitation rates. With increased precipitation rates and consequently deeper snow, the snow load on the Antarctic sea ice becomes heavy enough that it suppresses the ice below sea level. This results in even more and even thicker sea ice when the snow refreezes as more ice.

The paper indicates that some climate processes appear to actually be counterintuitive. "We used computer-generated simulations to get this research result. I hope that in the future we’ll be able to verify this result with real data through a long-term ice thickness measurement campaign," said Powell. "Our goal as scientists is to collect hard data to verify what the model is telling us. It will be critical to know for certain whether average sea ice thickness is indeed increasing in the Antarctic as our model indicates, and to determine what environmental factors are spurring this apparent phenomenon."

Achim Stössel of Texas A&M University in College Station, Texas, the third co-author on this paper, advises that "while numerical models have improved considerably over the last two decades, seemingly minor processes like the snow-to-ice conversion still need to be better incorporated in models as they can have a significant impact on the results and therefore on climate predictions."

Harvey Leifert | EurekAlert!
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>