Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Warmer air may cause increased Antarctic sea ice cover


Predicted increases in precipitation due to warmer air temperatures from greenhouse gas emissions may actually increase sea ice volume in the Antarctic’s Southern Ocean. This finding from a new study adds evidence of potential asymmetry between the two poles and may be an indication that climate change processes may have varying impacts on different areas of the globe.

"Most people have heard of climate change and how rising air temperatures are melting glaciers and sea ice in the Arctic," said Dylan C. Powell, lead author of the paper and a doctoral candidate at the University of Maryland Baltimore County. "However, findings from our simulations suggest a counterintuitive phenomenon. Some of the melt in the Arctic may be balanced by increases in sea ice volume in the Antarctic."

For the first time, the authors of the paper, published this month in the Journal of Geophysical Research (Oceans), used satellite observations from NASA’s Special Sensor Microwave/Imager to assess snow depth on sea ice and assimilated the satellite observations into their model to improve prediction of precipitation rates. By incorporating satellite observations into this new method, the researchers say they achieved more stable and realistic precipitation data, to counter the great variability in precipitation data sets typically found in the polar regions.

"On any given day, sea ice cover in the oceans of the polar regions is about the size of the U.S.," said Thorsten Markus, a co-author of the paper and a research scientist at NASA’s Goddard Space Flight Center. "Far-flung locations like the Arctic and Antarctic actually impact our temperature and climate where we live and work on a daily basis."

According to Markus, the deep and bottom water masses of the oceans make contact with the atmosphere only at high latitudes, near the poles. Polar processes, such as sea ice formation, are driving a huge, global, ocean heat pump, called thermohaline (or saline) circulation. To a large extent, this heat pump impacts the climate at lower latitudes.

Typically, warming of the climate leads to increased melting rates of sea ice cover and also increased precipitation rates. With increased precipitation rates and consequently deeper snow, the snow load on the Antarctic sea ice becomes heavy enough that it suppresses the ice below sea level. This results in even more and even thicker sea ice when the snow refreezes as more ice.

The paper indicates that some climate processes appear to actually be counterintuitive. "We used computer-generated simulations to get this research result. I hope that in the future we’ll be able to verify this result with real data through a long-term ice thickness measurement campaign," said Powell. "Our goal as scientists is to collect hard data to verify what the model is telling us. It will be critical to know for certain whether average sea ice thickness is indeed increasing in the Antarctic as our model indicates, and to determine what environmental factors are spurring this apparent phenomenon."

Achim Stössel of Texas A&M University in College Station, Texas, the third co-author on this paper, advises that "while numerical models have improved considerably over the last two decades, seemingly minor processes like the snow-to-ice conversion still need to be better incorporated in models as they can have a significant impact on the results and therefore on climate predictions."

Harvey Leifert | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>