Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U. of Colorado geophysicists image rock layers under Himalaya

30.06.2005


New technique developed to visualize colliding rock bodies



A team of geophysicists at the University of Colorado at Boulder has developed a new technique to visualize the colliding rock bodies beneath the Himalaya with unprecedented detail, answering a number of questions about the world’s highest mountains and providing a new tool for assessing earthquake hazards.

The study, "Imaging the Indian Subcontinent Beneath the Himalaya" appears in the June 30 issue of the journal Nature. Anne Sheehan, Roger Bilham, Vera Schulte-Pelkum and Gaspar Monsalve of CU-Boulder’s Cooperative Institute for Research in Environmental Sciences and department of geological sciences worked on the project along with scientists from the State University of New York at Binghamton and Kathmandu, Nepal.


"We imaged the boundary between the Indian and Asian tectonic plates by developing a new technique that highlights strongly deformed rocks beneath Earth’s surface, and applied it to data we collected with a network of temporary seismic sensors deployed in Nepal and Tibet," said Schulte-Pelkum, the paper’s lead author and a CIRES researcher.

The network included 29 broadband seismometers operated by the CU-Boulder and SUNY Binghamton teams. About 1,700 earthquakes from as far away as Europe, Alaska and Japan were recorded during an 18-month period starting in 2001. The study was funded primarily by the National Science Foundation.

"Our images of the crust and upper mantle show how the upper Indian crust fragments and is incorporated in the Himalaya, while the lower crust slides under Tibet and undergoes alterations that may help explain how the plateau maintains its high altitude," Schulte-Pelkum said.

Sheehan said Schulte-Pelkum developed a truly novel method to visualize the forces at work underneath the Himalaya. "It’s very exciting, and it’s something we can use elsewhere to analyze shear in the crust."

Shear zones are similar to faults, Schulte-Pelkum said. Faults are brittle structures at or near the surface of the earth, while shear zones are found at depths of 10 miles or more where heat causes more ductile, or flowing, rock movement.

In subduction zones such as where India and Asia collide, however, earthquakes along brittle faults can occur at depth because rock temperatures are cooler, the researchers said.

The collision of India into Asia forms the Himalaya, the world’s highest mountain chain, and Tibet, the world’s largest high plateau, Schulte-Pelkum explained. "From surface geology, we know that India dives under Asia. In Nepal, this slip is expressed in very large, destructive earthquakes that occur somewhere along the base of the mountains a few times a century."

However, the infrequency of the tremors had left scientists with few clues as to the structure of the region. "During the interval between these earthquakes, the shallow fault between underthrusting India and overriding Asia is seismically quiet and difficult to detect," Schulte-Pelkum said.

Sheehan explained that until now, geophysicists could analyze the movement of rock bodies only on the surface, where deformation can be directly observed.

With the team’s new method, geophysicists can study the deep crust and determine the direction rocks are being sheared. The shearing is similar to a deck of cards being spread out on a table, Sheehan explained. "We can see how the deep crust has moved. Seeing where these structures are and how they have moved in the subsurface helps us better understand where local hazards are.

"If we can more accurately calculate the subsurface geometries, we can improve our estimations of how the ground will shake during an earthquake. We can’t predict earthquakes, but we can get a better idea of how an earthquake’s energy will radiate," said Sheehan, an associate professor of geological sciences at CU-Boulder and a CIRES researcher.

"The Los Angeles Basin has all sorts of folds and faults and subsurface shear, so it would be another potential place to apply some of these techniques to get high-resolution images," Sheehan said.

Vera Schulte-Pelkum | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht Turning the Climate Tide by 2020
29.06.2017 | Potsdam-Institut für Klimafolgenforschung

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>