Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U. of Colorado geophysicists image rock layers under Himalaya

30.06.2005


New technique developed to visualize colliding rock bodies



A team of geophysicists at the University of Colorado at Boulder has developed a new technique to visualize the colliding rock bodies beneath the Himalaya with unprecedented detail, answering a number of questions about the world’s highest mountains and providing a new tool for assessing earthquake hazards.

The study, "Imaging the Indian Subcontinent Beneath the Himalaya" appears in the June 30 issue of the journal Nature. Anne Sheehan, Roger Bilham, Vera Schulte-Pelkum and Gaspar Monsalve of CU-Boulder’s Cooperative Institute for Research in Environmental Sciences and department of geological sciences worked on the project along with scientists from the State University of New York at Binghamton and Kathmandu, Nepal.


"We imaged the boundary between the Indian and Asian tectonic plates by developing a new technique that highlights strongly deformed rocks beneath Earth’s surface, and applied it to data we collected with a network of temporary seismic sensors deployed in Nepal and Tibet," said Schulte-Pelkum, the paper’s lead author and a CIRES researcher.

The network included 29 broadband seismometers operated by the CU-Boulder and SUNY Binghamton teams. About 1,700 earthquakes from as far away as Europe, Alaska and Japan were recorded during an 18-month period starting in 2001. The study was funded primarily by the National Science Foundation.

"Our images of the crust and upper mantle show how the upper Indian crust fragments and is incorporated in the Himalaya, while the lower crust slides under Tibet and undergoes alterations that may help explain how the plateau maintains its high altitude," Schulte-Pelkum said.

Sheehan said Schulte-Pelkum developed a truly novel method to visualize the forces at work underneath the Himalaya. "It’s very exciting, and it’s something we can use elsewhere to analyze shear in the crust."

Shear zones are similar to faults, Schulte-Pelkum said. Faults are brittle structures at or near the surface of the earth, while shear zones are found at depths of 10 miles or more where heat causes more ductile, or flowing, rock movement.

In subduction zones such as where India and Asia collide, however, earthquakes along brittle faults can occur at depth because rock temperatures are cooler, the researchers said.

The collision of India into Asia forms the Himalaya, the world’s highest mountain chain, and Tibet, the world’s largest high plateau, Schulte-Pelkum explained. "From surface geology, we know that India dives under Asia. In Nepal, this slip is expressed in very large, destructive earthquakes that occur somewhere along the base of the mountains a few times a century."

However, the infrequency of the tremors had left scientists with few clues as to the structure of the region. "During the interval between these earthquakes, the shallow fault between underthrusting India and overriding Asia is seismically quiet and difficult to detect," Schulte-Pelkum said.

Sheehan explained that until now, geophysicists could analyze the movement of rock bodies only on the surface, where deformation can be directly observed.

With the team’s new method, geophysicists can study the deep crust and determine the direction rocks are being sheared. The shearing is similar to a deck of cards being spread out on a table, Sheehan explained. "We can see how the deep crust has moved. Seeing where these structures are and how they have moved in the subsurface helps us better understand where local hazards are.

"If we can more accurately calculate the subsurface geometries, we can improve our estimations of how the ground will shake during an earthquake. We can’t predict earthquakes, but we can get a better idea of how an earthquake’s energy will radiate," said Sheehan, an associate professor of geological sciences at CU-Boulder and a CIRES researcher.

"The Los Angeles Basin has all sorts of folds and faults and subsurface shear, so it would be another potential place to apply some of these techniques to get high-resolution images," Sheehan said.

Vera Schulte-Pelkum | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments
22.01.2018 | Duke University

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>