Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growth secrets of Alaska’s mysterious field of lakes

27.06.2005


The thousands of oval lakes that dot Alaska’s North Slope are some of the fastest-growing lakes on the planet. Ranging in size from puddles to more than 15 miles in length, the lakes have expanded at rates up to 15 feet per year, year in and year out for thousands of years. The lakes are shaped like elongated eggs with the skinny ends pointing northwest.



How the lakes grow so fast, why they’re oriented in the same direction and what gives them their odd shape has puzzled geologists for decades. The field of lakes covers an area twice the size of Massachusetts, and the lakes are unusual enough to have their own name: oriented thaw lakes.

"Lakes come in all sizes and shapes, but they’re rarely oriented in the same direction," said Jon Pelletier, an assistant professor of geosciences at The University of Arizona in Tucson.


Now Pelletier has proposed a new explanation for the orientation, shape and speed of growth of oriented thaw lakes. The lakes’ unusual characteristics result from seasonal slumping of the banks when the permafrost thaws abruptly, he said. The lakes grow when rapid warming melts a lake’s frozen bank, and the soggy soil loses its strength and slides into the water. Such lakes are found in the permafrost zone in Alaska, northern Canada and northern Russia.

Previous explanations for the water bodies’ shape and orientation invoked wind-driven lake circulation and erosion by waves.

"We knew about the thaw slumping, but we didn’t know it had to do with the shape of the lakes," Pelletier said. His new mathematical model describing the formation of oriented lakes by thaw slumping will be published on June 30 in the Journal of Geophysical Research.

Pelletier’s interest in oriented lakes was sparked by teaching geomorphology, the study of landforms. "’Oriented lakes’ is one of the classic subjects that comes up in class. There was a textbook explanation that I didn’t find convincing, so I decided to tinker around with alternative models."

Pelletier does his tinkering by plugging mathematical equations into a computer.

"The computer allows you to put the processes into the model and say, ’If the winds blow this way, what kind of a lake would you expect to see?’ or ’If it’s from thaw, what would we expect to see?’ You do still need to go and see, do the winds blow this way or does the thaw happen that way."

On Alaska’s North Slope, the prevailing winds blow perpendicular to the long axes of the lakes. According to the traditional explanation, such winds set up currents within the lakes that erode the banks, particularly at the lakes’ ends. Such currents would erode coarse-grained, sandy soils faster than fine-grained clay soils.

According to Pelletier, one key ingredient for oriented thaw lakes is permafrost – the special mixture of soil and ice that forms the surface of the land in the Far North. On the north coast of Alaska and at similar latitudes throughout the world, the top, or active, layer of the permafrost melts at some point in the summer and refreezes again in the fall.

If the temperature warms gradually, the ice portion of the permafrost melts slowly, allowing the water to drain out of the soil and leave relatively firm sand or sediment behind. However, if an early heat wave melts the permafrost’s ice rapidly, the result is a soggy, unstable soil. When such rapidly thawed permafrost is part of the vertical bank of a lake, the bank slumps into the water, enlarging the lake. More of the bank collapses if the soil is fine-grained, rather than sandy.

Another ingredient in Pelletier’s explanation is a long, gentle slope. Because Alaska’s oriented lakes are embedded in a gently sloping landscape, the downhill end of a lake always has a shorter bank. According to Pelletier’s computer model, shorter banks melt more and have bigger slumps. Therefore when the lake experiences thaw slumping, Pelletier’s model says the lake grows more in the downhill direction than it does uphill, generating the lakes’ characteristic elongated-egg shape.

To test his thaw-slumping model against the wind-erosion model, Pelletier used satellite images to create a database that describes 1,400 of northern Alaska’s oriented lakes. When he compared them by size and soil type, he found that more big lakes occurred on fine-grained soil, providing support for the idea that thaw slumping, not wind, formed the lakes.

Moreover, some small portion of the lakes are not oriented perpendicular to the wind, as is required for wind erosion to be the main force forming the lakes.

Pelletier’s analysis of the database also shows that larger lakes generally have lower banks, another prediction of the thaw-slumping model.

Now that he’s verified that thaw-slumping, not wind, is the driving force behind the formation of Alaska’s North Slope lakes, Pelletier’s next step is seeing whether the lakes have indeed grown more in the downhill direction, as his model predicts.

"It’s so simple and low tech," he said. "It can be done by comparing aerial photos over time but no one’s done it. There are a lot of photos from past decades."

Mari N. Jensen | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>