Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growth secrets of Alaska’s mysterious field of lakes

27.06.2005


The thousands of oval lakes that dot Alaska’s North Slope are some of the fastest-growing lakes on the planet. Ranging in size from puddles to more than 15 miles in length, the lakes have expanded at rates up to 15 feet per year, year in and year out for thousands of years. The lakes are shaped like elongated eggs with the skinny ends pointing northwest.



How the lakes grow so fast, why they’re oriented in the same direction and what gives them their odd shape has puzzled geologists for decades. The field of lakes covers an area twice the size of Massachusetts, and the lakes are unusual enough to have their own name: oriented thaw lakes.

"Lakes come in all sizes and shapes, but they’re rarely oriented in the same direction," said Jon Pelletier, an assistant professor of geosciences at The University of Arizona in Tucson.


Now Pelletier has proposed a new explanation for the orientation, shape and speed of growth of oriented thaw lakes. The lakes’ unusual characteristics result from seasonal slumping of the banks when the permafrost thaws abruptly, he said. The lakes grow when rapid warming melts a lake’s frozen bank, and the soggy soil loses its strength and slides into the water. Such lakes are found in the permafrost zone in Alaska, northern Canada and northern Russia.

Previous explanations for the water bodies’ shape and orientation invoked wind-driven lake circulation and erosion by waves.

"We knew about the thaw slumping, but we didn’t know it had to do with the shape of the lakes," Pelletier said. His new mathematical model describing the formation of oriented lakes by thaw slumping will be published on June 30 in the Journal of Geophysical Research.

Pelletier’s interest in oriented lakes was sparked by teaching geomorphology, the study of landforms. "’Oriented lakes’ is one of the classic subjects that comes up in class. There was a textbook explanation that I didn’t find convincing, so I decided to tinker around with alternative models."

Pelletier does his tinkering by plugging mathematical equations into a computer.

"The computer allows you to put the processes into the model and say, ’If the winds blow this way, what kind of a lake would you expect to see?’ or ’If it’s from thaw, what would we expect to see?’ You do still need to go and see, do the winds blow this way or does the thaw happen that way."

On Alaska’s North Slope, the prevailing winds blow perpendicular to the long axes of the lakes. According to the traditional explanation, such winds set up currents within the lakes that erode the banks, particularly at the lakes’ ends. Such currents would erode coarse-grained, sandy soils faster than fine-grained clay soils.

According to Pelletier, one key ingredient for oriented thaw lakes is permafrost – the special mixture of soil and ice that forms the surface of the land in the Far North. On the north coast of Alaska and at similar latitudes throughout the world, the top, or active, layer of the permafrost melts at some point in the summer and refreezes again in the fall.

If the temperature warms gradually, the ice portion of the permafrost melts slowly, allowing the water to drain out of the soil and leave relatively firm sand or sediment behind. However, if an early heat wave melts the permafrost’s ice rapidly, the result is a soggy, unstable soil. When such rapidly thawed permafrost is part of the vertical bank of a lake, the bank slumps into the water, enlarging the lake. More of the bank collapses if the soil is fine-grained, rather than sandy.

Another ingredient in Pelletier’s explanation is a long, gentle slope. Because Alaska’s oriented lakes are embedded in a gently sloping landscape, the downhill end of a lake always has a shorter bank. According to Pelletier’s computer model, shorter banks melt more and have bigger slumps. Therefore when the lake experiences thaw slumping, Pelletier’s model says the lake grows more in the downhill direction than it does uphill, generating the lakes’ characteristic elongated-egg shape.

To test his thaw-slumping model against the wind-erosion model, Pelletier used satellite images to create a database that describes 1,400 of northern Alaska’s oriented lakes. When he compared them by size and soil type, he found that more big lakes occurred on fine-grained soil, providing support for the idea that thaw slumping, not wind, formed the lakes.

Moreover, some small portion of the lakes are not oriented perpendicular to the wind, as is required for wind erosion to be the main force forming the lakes.

Pelletier’s analysis of the database also shows that larger lakes generally have lower banks, another prediction of the thaw-slumping model.

Now that he’s verified that thaw-slumping, not wind, is the driving force behind the formation of Alaska’s North Slope lakes, Pelletier’s next step is seeing whether the lakes have indeed grown more in the downhill direction, as his model predicts.

"It’s so simple and low tech," he said. "It can be done by comparing aerial photos over time but no one’s done it. There are a lot of photos from past decades."

Mari N. Jensen | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts

08.12.2016 | Power and Electrical Engineering

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>