Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


El Niño and La Niña Mix Up Plankton Populations


El Niño and La Niña play with the populations of microscopic ocean plants called phytoplankton. That’s what scientists have found using NASA satellite data and a computer model.

Phytoplankton are the base of the marine food chain, providing food for little sea animals called zooplankton, which in turn feed fish and other creatures. Any change in phytoplankton numbers alters the ocean food chain.

The computer model showed that during El Niño periods, warm waters from the Western Pacific Ocean spread out over much of the ocean basin as upwelling weakens in the Eastern Pacific Ocean. Upwelling brings cool, nutrient-rich water from the deep ocean up to the surface. When the upwelling is weakened, there are less phytoplankton, making food more scarce for zooplankton that eat the ocean plants.

During La Niña conditions as in 1998, the opposite effect occurs as the easterly trade winds pick up and upwelling intensifies bringing nutrients like iron to the surface waters, which increases phytoplankton growth. Sometimes, the growth can take place quickly, developing into what scientists call phytoplankton "blooms."

In a study published in the January 2005 issue of Geophysical Research Letters, Wendy Wang and colleagues at the University of Maryland Earth System Science Interdisciplinary Center, College Park, Md., found that changes in phytoplankton amounts due to El Niño and La Niña not only affect the food chain, but also influence Earth’s climate.

As phytoplankton flourish during La Niña years, a large amount of carbon is used to build their cells during photosynthesis. The plants get carbon from carbon dioxide in surface waters. In the atmosphere, carbon dioxide is an important greenhouse gas. When marine organisms die, they carry carbon in their cells to the deep ocean. Surprisingly, this study found that this transfer of carbon to the deep ocean increased by a factor of eight due to the large phytoplankton blooms that can occur during a La Niña. At the same time, the effects of El Niños can reduce phytoplankton numbers, and decrease the impacts of this "biological carbon pump."

Using a computer model and NASA’s Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite, Wang examined marine biological changes associated with El Niño and La Niña, and found the mechanisms responsible for such phytoplankton blooms. SeaWiFS measures the amount of light coming out of the ocean at different wavelengths on the spectrum, and can determine the strength of the greenness coming from the tiny plants’ cells.

When the El Niño of 1997-1998 became a La Niña beginning in mid-1998, SeaWiFS imagery showed extremely dark greenness along the equator. "[At that time SeaWifs showed] chlorophyll concentrations increasing by more than 500 percent, a level not previously observed," said Wang. The study found that because most microscopic animals called zooplankton died off during the El Niño there were less around to eat phytoplankton. That led to large phytoplankton blooms.

Besides influencing the marine food web, phytoplankton also help regulate the Earth’s climate by accounting for about half of the carbon dioxide, a major greenhouse gas, absorbed annually from the atmosphere by plants.

Rob Gutro | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>