Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Assessing the Amazon River’s sensitivity to deforestation

21.06.2005


Understanding how the Amazon River varies in time, what causes those variations, and how sensitive it will be to ongoing, and accelerating, deforestation is a focus of study for scientists at the Woods Hole Research Center. Population and development pressures in the last several decades have led to significant areas of deforestation in the Amazon, most in the eastern and southern portion of the basin. By using a combination of numerical models and data from several disciplines to assess the possible impacts of future human-induced land cover and land use change, researchers are investigating the causes of changes to stream hydrology and biogeochemistry.



The Amazon, one of the most important watersheds on the planet and the largest river in the world, includes a massive network of rivers, floodplains, streams and wetlands, all playing an important role in modulating the Earth’s hydrologic and biogeochemical cycles. With nearly 20 percent of the Earth’s freshwater discharge, the Amazon carries more water than the nine other largest rivers of the world combined. The first phase of the study, led by Marcos Costa at the University of Viçosa in Minas Gerais, Brazil and completed in 2002, put together an enormous collection of data describing the physical characteristics of the Amazon River Basin. The data included the first detailed representation of the stream network throughout the 6 and 1/2 million km2 basin, and by itself, took 5 people over nine months to create. Researchers all over the globe are now using this data.

The second phase, led by Michael Coe, an associate scientist with The Woods Hole Research Center, was to build the first comprehensive computer model of the Amazon River and floodplain. This model, built over the course of several years and just recently completed, simulates the inter-connected river and floodplain system for the entire 6.5 million km2 basin. According to Coe, "The problem has always been that there simply aren’t enough observations over a long enough time period for us to understand the River system. So this model, by letting us simulate the entire river through time, has helped us learn much about how the river flow and flooded area react to year-to-year variations in climate."


Currently entering a third phase of study, a model of the Amazon River and floodplain will be combined with estimates of future deforestation to understand how humans may be affecting the Amazon. Coe says, "This research will provide us with a better understanding of how sensitive the Amazon river is to human activities and can provide government managers and civil society with a tool for analyzing the costs and benefits of different land-use policies and help plan future settlement, land use and conservation priorities."

"This third phase is particularly exciting because we are now combining what we have learned about the physical River with human activities on the land surface, such as deforestation and agriculture," says Coe. This novel linkage of social and physical sciences will provide a better understanding of the consequences for the River of a range of land use policy options in Amazonia, from current business-as-usual development trends to improved governance strategies leading into the mid-21st century. "It is that improved understanding of how human decisions about land use directly impact the River and its ecosystems, which can help people make more informed decisions for the future of Amazonia," he adds.

Elizabeth Braun | EurekAlert!
Further information:
http://www.whrc.org

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>