Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Assessing the Amazon River’s sensitivity to deforestation

21.06.2005


Understanding how the Amazon River varies in time, what causes those variations, and how sensitive it will be to ongoing, and accelerating, deforestation is a focus of study for scientists at the Woods Hole Research Center. Population and development pressures in the last several decades have led to significant areas of deforestation in the Amazon, most in the eastern and southern portion of the basin. By using a combination of numerical models and data from several disciplines to assess the possible impacts of future human-induced land cover and land use change, researchers are investigating the causes of changes to stream hydrology and biogeochemistry.



The Amazon, one of the most important watersheds on the planet and the largest river in the world, includes a massive network of rivers, floodplains, streams and wetlands, all playing an important role in modulating the Earth’s hydrologic and biogeochemical cycles. With nearly 20 percent of the Earth’s freshwater discharge, the Amazon carries more water than the nine other largest rivers of the world combined. The first phase of the study, led by Marcos Costa at the University of Viçosa in Minas Gerais, Brazil and completed in 2002, put together an enormous collection of data describing the physical characteristics of the Amazon River Basin. The data included the first detailed representation of the stream network throughout the 6 and 1/2 million km2 basin, and by itself, took 5 people over nine months to create. Researchers all over the globe are now using this data.

The second phase, led by Michael Coe, an associate scientist with The Woods Hole Research Center, was to build the first comprehensive computer model of the Amazon River and floodplain. This model, built over the course of several years and just recently completed, simulates the inter-connected river and floodplain system for the entire 6.5 million km2 basin. According to Coe, "The problem has always been that there simply aren’t enough observations over a long enough time period for us to understand the River system. So this model, by letting us simulate the entire river through time, has helped us learn much about how the river flow and flooded area react to year-to-year variations in climate."


Currently entering a third phase of study, a model of the Amazon River and floodplain will be combined with estimates of future deforestation to understand how humans may be affecting the Amazon. Coe says, "This research will provide us with a better understanding of how sensitive the Amazon river is to human activities and can provide government managers and civil society with a tool for analyzing the costs and benefits of different land-use policies and help plan future settlement, land use and conservation priorities."

"This third phase is particularly exciting because we are now combining what we have learned about the physical River with human activities on the land surface, such as deforestation and agriculture," says Coe. This novel linkage of social and physical sciences will provide a better understanding of the consequences for the River of a range of land use policy options in Amazonia, from current business-as-usual development trends to improved governance strategies leading into the mid-21st century. "It is that improved understanding of how human decisions about land use directly impact the River and its ecosystems, which can help people make more informed decisions for the future of Amazonia," he adds.

Elizabeth Braun | EurekAlert!
Further information:
http://www.whrc.org

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>