Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme melting event defines Earth’s early history

17.06.2005


Could Earth have had an even more violent infancy than previously imagined? New isotope data suggest that the Earth not only had a very violent beginning but also point to new information about our planet’s chemical evolution.



New and precise measurements of a neodymium isotope ratio (142Nd/144Nd) led Maud Boyet and Rick Carlson of Carnegie Institution’s Department of Terrestrial Magnetism to the discovery that all terrestrial rocks have an excess of 142Nd compared to the expected building blocks of the planet. The results will appear in the June 16, 2005 edition of Science.

Prior research suggested that the Earth formed by the accumulation of planetesimals -- small cold bodies present in early solar system history. The chemical composition of these early bodies is reflected today in a type of stony meteorite called chondrites. Scientists had expected that the Earth would have a composition similar to these meteorites. However, this new research challenges these earlier conclusions by showing that terrestrial rocks have excess 142Nd caused by the radioactive decay of the now extinct isotope 146Sm.


One possible explanation of the difference in 142Nd/144Nd between Earth and chondrites is that the Earth’s average composition is not chondritic, but on the basis of several chemical arguments this explanation is unlikely. More probable is that the portion of the Earth involved in creating crustal rocks was chemically differentiated very early in the planet’s history – Boyet and Carlson’s results suggest within the first 30 million years, or less than 1%, of Earth’s history. As such, this evidence fits the growing number of observations from the Moon and Mars that the early history of planets was a very violent one, where collisions with planetesimals, the release of radioactive heat, and the energy involved in separating a metallic core all provide enough energy to melt the planet. Cooling and crystallization of the molten planet over timescales of millions to a few tens of millions of years then result in its chemical differentiation, segregating material according to density. This differentiation left most of the Earth’s mantle similar in composition to the present-day upper mantle from which volcanic rocks are derived.

There must then be material that is complementary in composition to the bulk of the mantle. This complementary region, if the Earth is to have an average composition matching chondrites, must be enriched in potassium, uranium, and thorium -- radioactive elements that have provided most of the heat generation in the Earth’s interior throughout its history. Furthermore, this complementary mantle reservoir must be very deep, because none of the magmas that have erupted at the Earth’s surface have ever sampled it. Boyet and Carlson suggest that the reservoir coincides with the so-called D" layer imaged seismically at the very base of the mantle, just above the core. A radioactive-element-rich layer deep in the Earth is like a heating plate at the bottom of a pot: it will keep the bottom of the pot hot for a long time. Such a layer will also keep the top of the core hot and hence delay its cooling and crystallization. The scientists postulate that the early differentiation of the Earth and the deep layer produced by that process may be the reason that the Earth still has its magnetic field. The deep layer may also be responsible for generating hot plumes of upwelling mantle material that give rise to volcanic island chains such as Hawaii.

Maud Boyet | EurekAlert!
Further information:
http://www.dtm.ciw.edu
http://www.CarnegieInstitution.org

More articles from Earth Sciences:

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>