Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme melting event defines Earth’s early history

17.06.2005


Could Earth have had an even more violent infancy than previously imagined? New isotope data suggest that the Earth not only had a very violent beginning but also point to new information about our planet’s chemical evolution.



New and precise measurements of a neodymium isotope ratio (142Nd/144Nd) led Maud Boyet and Rick Carlson of Carnegie Institution’s Department of Terrestrial Magnetism to the discovery that all terrestrial rocks have an excess of 142Nd compared to the expected building blocks of the planet. The results will appear in the June 16, 2005 edition of Science.

Prior research suggested that the Earth formed by the accumulation of planetesimals -- small cold bodies present in early solar system history. The chemical composition of these early bodies is reflected today in a type of stony meteorite called chondrites. Scientists had expected that the Earth would have a composition similar to these meteorites. However, this new research challenges these earlier conclusions by showing that terrestrial rocks have excess 142Nd caused by the radioactive decay of the now extinct isotope 146Sm.


One possible explanation of the difference in 142Nd/144Nd between Earth and chondrites is that the Earth’s average composition is not chondritic, but on the basis of several chemical arguments this explanation is unlikely. More probable is that the portion of the Earth involved in creating crustal rocks was chemically differentiated very early in the planet’s history – Boyet and Carlson’s results suggest within the first 30 million years, or less than 1%, of Earth’s history. As such, this evidence fits the growing number of observations from the Moon and Mars that the early history of planets was a very violent one, where collisions with planetesimals, the release of radioactive heat, and the energy involved in separating a metallic core all provide enough energy to melt the planet. Cooling and crystallization of the molten planet over timescales of millions to a few tens of millions of years then result in its chemical differentiation, segregating material according to density. This differentiation left most of the Earth’s mantle similar in composition to the present-day upper mantle from which volcanic rocks are derived.

There must then be material that is complementary in composition to the bulk of the mantle. This complementary region, if the Earth is to have an average composition matching chondrites, must be enriched in potassium, uranium, and thorium -- radioactive elements that have provided most of the heat generation in the Earth’s interior throughout its history. Furthermore, this complementary mantle reservoir must be very deep, because none of the magmas that have erupted at the Earth’s surface have ever sampled it. Boyet and Carlson suggest that the reservoir coincides with the so-called D" layer imaged seismically at the very base of the mantle, just above the core. A radioactive-element-rich layer deep in the Earth is like a heating plate at the bottom of a pot: it will keep the bottom of the pot hot for a long time. Such a layer will also keep the top of the core hot and hence delay its cooling and crystallization. The scientists postulate that the early differentiation of the Earth and the deep layer produced by that process may be the reason that the Earth still has its magnetic field. The deep layer may also be responsible for generating hot plumes of upwelling mantle material that give rise to volcanic island chains such as Hawaii.

Maud Boyet | EurekAlert!
Further information:
http://www.dtm.ciw.edu
http://www.CarnegieInstitution.org

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>