Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot volcanic eruptions could lead to a cooler Earth

13.06.2005


Volcanic eruptions may be an agent of rapid and long-term climate change, according to new research by British scientists. Vincent Gauci and co-authors Nancy Dise and Steve Blake of the Open University simulated the volcanic acid rain from one of Europe’s largest historical eruptions, the Icelandic Laki eruption of 1783, which caused widespread crop damage and deaths around Europe. Their finding are scheduled for publication in the American Geophysical Union journal, Geophysical Research Letters, later this month.



Gauci says, "we know that volcanic aerosol [airborne] particles reflect the Sun’s rays back out to space and also create more clouds that have the same effect. It all helps to cool the planet for a year or two. These simple physical relationships have been known for a while. Our findings show that volcanic eruptions have another, more indirect, effect: the resulting sulfuric acid from the volcano helps to biologically reduce an important source of atmospheric greenhouse gases. At the extreme, this effect could cause significant cooling for up to 10 years or more."

Blake says, "The amount of sulfur dioxide put out by Laki in nine months was ten times more than the amount that now comes from all of western European industrial sources in a year. That would have caused a major natural pollution event."


The researchers found that such eruptions create a microbial battleground in wetlands, with sulfate-reducing bacteria suppressing the microbes that would normally produce the powerful greenhouse gas methane. In other words, the sulfate-loving bacteria are victorious over the microbes producing methane, leading to a cooling effect.

"We did the simulation on a peat bog in Moray in northeast Scotland, an area we know was affected by the volcanic fallout from the Laki eruption," adds Gauci, "and found that the reduced methane emission lasts several years beyond the end of the acid rain. Our calculations show that the emissions would take many years to recover--far longer than volcanoes are currently understood to impact on the atmosphere."

The researchers now think that volcanoes may exert a more powerful influence over Earth’s atmosphere than was thought. Volcanoes may even be a more important regulator of wetland greenhouse gases than modern industrial sources of acid rain. "Wetland ecosystems are the biggest source of methane and for the most part are located in areas of the world that are remote from industrial activity.

But many of Earth’s wetlands seem to be located in volcanically active regions such as Indonesia, Patagonia, Kamchatka, and Alaska. Even some wetlands that are quite far away from volcanoes, such as those in Scandinavia or Siberia, will be regularly affected by Laki-like pollution events from Icelandic eruptions" says Gauci.

Gauci adds that there was a period of Earth’s pre-history when this effect may have created important climate changes. "This interaction may have been particularly important 50 million years ago, when the warm greenhouse climate of the day was due, in large part, to methane from the extensive wetlands that covered the Earth at that time. During that time, large volcanic eruptions could have been real agents of rapid climate change due to this mechanism."

The research also points to a long recovery period for wetland ecosystems that have experienced industrially-derived acid rain. Gauci says, "We’ve been getting on top of the sulfur pollution problem in Europe and the U.S. for a long time now. Our findings show, however, that the effects of acid rain can still linger for a long time."

Harvey Leifert | EurekAlert!
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>