Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot volcanic eruptions could lead to a cooler Earth

13.06.2005


Volcanic eruptions may be an agent of rapid and long-term climate change, according to new research by British scientists. Vincent Gauci and co-authors Nancy Dise and Steve Blake of the Open University simulated the volcanic acid rain from one of Europe’s largest historical eruptions, the Icelandic Laki eruption of 1783, which caused widespread crop damage and deaths around Europe. Their finding are scheduled for publication in the American Geophysical Union journal, Geophysical Research Letters, later this month.



Gauci says, "we know that volcanic aerosol [airborne] particles reflect the Sun’s rays back out to space and also create more clouds that have the same effect. It all helps to cool the planet for a year or two. These simple physical relationships have been known for a while. Our findings show that volcanic eruptions have another, more indirect, effect: the resulting sulfuric acid from the volcano helps to biologically reduce an important source of atmospheric greenhouse gases. At the extreme, this effect could cause significant cooling for up to 10 years or more."

Blake says, "The amount of sulfur dioxide put out by Laki in nine months was ten times more than the amount that now comes from all of western European industrial sources in a year. That would have caused a major natural pollution event."


The researchers found that such eruptions create a microbial battleground in wetlands, with sulfate-reducing bacteria suppressing the microbes that would normally produce the powerful greenhouse gas methane. In other words, the sulfate-loving bacteria are victorious over the microbes producing methane, leading to a cooling effect.

"We did the simulation on a peat bog in Moray in northeast Scotland, an area we know was affected by the volcanic fallout from the Laki eruption," adds Gauci, "and found that the reduced methane emission lasts several years beyond the end of the acid rain. Our calculations show that the emissions would take many years to recover--far longer than volcanoes are currently understood to impact on the atmosphere."

The researchers now think that volcanoes may exert a more powerful influence over Earth’s atmosphere than was thought. Volcanoes may even be a more important regulator of wetland greenhouse gases than modern industrial sources of acid rain. "Wetland ecosystems are the biggest source of methane and for the most part are located in areas of the world that are remote from industrial activity.

But many of Earth’s wetlands seem to be located in volcanically active regions such as Indonesia, Patagonia, Kamchatka, and Alaska. Even some wetlands that are quite far away from volcanoes, such as those in Scandinavia or Siberia, will be regularly affected by Laki-like pollution events from Icelandic eruptions" says Gauci.

Gauci adds that there was a period of Earth’s pre-history when this effect may have created important climate changes. "This interaction may have been particularly important 50 million years ago, when the warm greenhouse climate of the day was due, in large part, to methane from the extensive wetlands that covered the Earth at that time. During that time, large volcanic eruptions could have been real agents of rapid climate change due to this mechanism."

The research also points to a long recovery period for wetland ecosystems that have experienced industrially-derived acid rain. Gauci says, "We’ve been getting on top of the sulfur pollution problem in Europe and the U.S. for a long time now. Our findings show, however, that the effects of acid rain can still linger for a long time."

Harvey Leifert | EurekAlert!
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Northern oceans pumped CO2 into the atmosphere
27.03.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

nachricht Weather extremes: Humans likely influence giant airstreams
27.03.2017 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>