Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hot volcanic eruptions could lead to a cooler Earth


Volcanic eruptions may be an agent of rapid and long-term climate change, according to new research by British scientists. Vincent Gauci and co-authors Nancy Dise and Steve Blake of the Open University simulated the volcanic acid rain from one of Europe’s largest historical eruptions, the Icelandic Laki eruption of 1783, which caused widespread crop damage and deaths around Europe. Their finding are scheduled for publication in the American Geophysical Union journal, Geophysical Research Letters, later this month.

Gauci says, "we know that volcanic aerosol [airborne] particles reflect the Sun’s rays back out to space and also create more clouds that have the same effect. It all helps to cool the planet for a year or two. These simple physical relationships have been known for a while. Our findings show that volcanic eruptions have another, more indirect, effect: the resulting sulfuric acid from the volcano helps to biologically reduce an important source of atmospheric greenhouse gases. At the extreme, this effect could cause significant cooling for up to 10 years or more."

Blake says, "The amount of sulfur dioxide put out by Laki in nine months was ten times more than the amount that now comes from all of western European industrial sources in a year. That would have caused a major natural pollution event."

The researchers found that such eruptions create a microbial battleground in wetlands, with sulfate-reducing bacteria suppressing the microbes that would normally produce the powerful greenhouse gas methane. In other words, the sulfate-loving bacteria are victorious over the microbes producing methane, leading to a cooling effect.

"We did the simulation on a peat bog in Moray in northeast Scotland, an area we know was affected by the volcanic fallout from the Laki eruption," adds Gauci, "and found that the reduced methane emission lasts several years beyond the end of the acid rain. Our calculations show that the emissions would take many years to recover--far longer than volcanoes are currently understood to impact on the atmosphere."

The researchers now think that volcanoes may exert a more powerful influence over Earth’s atmosphere than was thought. Volcanoes may even be a more important regulator of wetland greenhouse gases than modern industrial sources of acid rain. "Wetland ecosystems are the biggest source of methane and for the most part are located in areas of the world that are remote from industrial activity.

But many of Earth’s wetlands seem to be located in volcanically active regions such as Indonesia, Patagonia, Kamchatka, and Alaska. Even some wetlands that are quite far away from volcanoes, such as those in Scandinavia or Siberia, will be regularly affected by Laki-like pollution events from Icelandic eruptions" says Gauci.

Gauci adds that there was a period of Earth’s pre-history when this effect may have created important climate changes. "This interaction may have been particularly important 50 million years ago, when the warm greenhouse climate of the day was due, in large part, to methane from the extensive wetlands that covered the Earth at that time. During that time, large volcanic eruptions could have been real agents of rapid climate change due to this mechanism."

The research also points to a long recovery period for wetland ecosystems that have experienced industrially-derived acid rain. Gauci says, "We’ve been getting on top of the sulfur pollution problem in Europe and the U.S. for a long time now. Our findings show, however, that the effects of acid rain can still linger for a long time."

Harvey Leifert | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>