Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tsunami research shows destructive path worse in developed areas

10.06.2005


Last December’s tsunami was a destructive force of nature that swept entire villages away and resulted in the deaths of approximately 200,000 people. Now, a team of researchers including Arizona State University’s Harinda Joseph Fernando reports that some areas of Sri Lanka were devastated more than others and that the increased destruction follows human development along coastal regions.



Fernando, director of ASU’s environmental fluid dynamics program and a native Sri Lankan, spent six days in January with a team of eight colleagues measuring the waves’ maximum heights, the heights of the water run-up on land, how far inland the tsunami came and the total area of inundation on land. The team also checked data they collected against computer model predictions.

They published their results in the June 10 issue of Science in an article, "Observations by the International Tsunami Survey Team in Sri Lanka."


Philip Liu, a Cornell University professor of civil and environmental engineering, is the team leader and primary author of the article. Other team members are Patrick Lynett, Texas A&M University; Bruce Jaffe and Robert Morton, United States Geological Survey; Hermann Fritz, Georgia Institute of Technology; Bretwood Higman, University of Washington; James Goff, National Institute of Water and Atmosphere Research, New Zealand; and Costas Synolakis, University of Southern California.

Eyewitness accounts of the event did not give the team quantitative depictions of the tsunami, so the scientists became detectives, looking at clues like the elevation of water marks on standing buildings, scars on trees and rafted debris to gauge the height of the water. Measurement marks were photographed and locations were obtained using a Global Positioning System.

Along the island’s east coast, which suffered the direct brunt of the tsunami, waves averaged heights of 30 to 35 feet (10 meters). The west coast exhibited some areas with wave height similar to the east coast, but in other areas the wave height dropped off sharply to around 3 or 8 feet (1 to 2.5 meters). Inundation, or how far inland the tsunami came, was fairly uniform along the east coast, but on the west coast, the inundation distances varied greatly.

After comparing the data they collected with the computer model predictions, the group came up with mixed results.

"One of the things we discovered was that the computer model was pretty good for the east coast, but not for the island’s west coast," says Fernando. "The patchiness we found on the west coast was a mystery."

The team then set out to determine why the west coast exhibited anomalous behavior. Over the course of their observations, the survey team noticed several instances in which human intervention seemed to have amplified the behavior of the swell’s path when the waves rushed inland.

A specific instance is a derailed passenger train along the Sri Lankan west coast that killed more than 1,500 people. The beach area immediately adjacent to the railroad had been altered after years of coral poaching. Mining for coral is big business in Sri Lanka due to its use as a raw material for various products, says Fernando, and although the act is illegal, the Sri Lankan government is lax in its enforcement.

Removing the coral does more than hurt the natural beauty of the island and upset the ecosystem. The coral acts as natural coastal protection against waves by breaking up the current as it sweeps into the beach. With a substantial amount of the coral removed, the tsunami was free to tear further inland than it would have been able to do naturally.

Re-landscaping the natural terrain of the island for commercial purposes also lead to horrific results. In one case, a resort removed part of a sand dune to accommodate more scenic views for its guests. That resort was completely destroyed when the tsunami hit, while neighboring areas located behind unaltered dunes were less damaged.

Fernando feels that the team’s findings will have an impact on future research and policy concerning development and tourism.

"We’d like this report to sound an alarm that governments have to be more careful about enforcing coral poaching and destroying the beaches’ natural defenses," says Fernando.

The tremendous carnage caused by the tsunami resulted in an emotional homecoming for Fernando.

"When I first saw it, it was a devastating experience," says Fernando. "But after a while, you get used to it because there was destruction everywhere."

To aid in future prevention of mass destruction caused by tsunamis, Fernando is working with Saman Samarawickrama from the University of Moratuwa in Sri Lanka. Samarawickrama, currently visiting ASU, and Fernando are studying the effects of corals on waves.

Fernando stresses that this research has applications almost anywhere in the world.

"The implications are applicable for any other tsunami," adds Fernando. "It should affect people’s thoughts about tsunamis on any island or coastline."

Mike Price | EurekAlert!
Further information:
http://www.asu.edu

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>