Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FSU meteorologists’ work may lead to better tracking of hurricanes

09.06.2005


Scientists are continually exploring different aspects of hurricanes to increase the understanding of how they behave. Recently, two NASA-funded scientists from Florida State University analyzed ozone levels surrounding hurricanes. Their work could lead to better methods of forecasting the paths of the deadly storms.



In their study, FSU meteorologists Xiaolei Zou and Yonghui Wu found that variations of ozone levels from the surface of the ocean to the upper atmosphere are closely related to the formation, intensification and movement of a hurricane. In studying meteorological data from 12 such storms, Zou and Wu noticed that over an area of 100 miles, the area surrounding each hurricane typically had low levels of ozone from the surface to the top of the storm. Whenever the hurricane intensified, the ozone levels throughout the storm decreased even more.

In addition, when Zou and Wu examined hurricanes using the ozone data, the eye of the storms became very clear. Because forecasters always try to pinpoint the eye of the hurricane, this knowledge will help with locating a storm’s exact position and possibly lead to better tracking.


The National Oceanic and Atmospheric Administration’s National Hurricane Center (NHC) is the agency that issues hurricane forecasts. Of the 12 storms analyzed, the ozone data and the NHC official report differed on the mean distance between the estimated eye by less than 18 miles during the most intense stage of the storms. When Zou and Wu added the satellite-observed ozone levels around a hurricane into a computer forecast model, the model greatly improved the predicted track that the hurricane would take.

"This research highlights the benefits of Total Ozone Mapping Spectrometer (TOMS) data in hurricane track and intensity prediction, an important forecasting problem since hurricanes often strike regions of high population and property growth, resulting in large natural disasters," said Zou.

Another interesting finding from Zou and Wu’s research is that ozone levels give a clue that a storm will develop before other methods do. The early spin of a tropical cyclone is weak and sometimes covered by clouds, and not easily detected by satellites that provide pictures of clouds. The ozone data gives scientists a "look beyond the clouds."

Ozone is all around the world and in the upper and lower atmosphere. Ozone in the upper atmosphere protects life on Earth from harmful ultraviolet rays from the sun, which can cause sunburn and skin cancer in humans. Ozone close to the surface is a pollutant; on hot, humid days with little wind, it creates a haze, such as that over big cities, that is harmful to breathe.

By using NASA’s satellite Earth Probe/TOMS total ozone data, forecasters can identify ozone amounts that are closely related to the formation, intensification and movement of a hurricane. Zou and Wu also found a strong relationship between ozone, air pressure and spin within the hurricanes.

Zou said that the connections between ozone levels and hurricane behavior are a very important step in understanding the storms. For more information and images about this research, please see: www.nasa.gov/vision/earth/environment/ozone_drop.html

Xiaolei Zou | EurekAlert!
Further information:
http://www.fsu.com

More articles from Earth Sciences:

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

nachricht Collapse of the European ice sheet caused chaos
27.06.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

For a chimpanzee, one good turn deserves another

27.06.2017 | Life Sciences

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>