Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FSU meteorologists’ work may lead to better tracking of hurricanes

09.06.2005


Scientists are continually exploring different aspects of hurricanes to increase the understanding of how they behave. Recently, two NASA-funded scientists from Florida State University analyzed ozone levels surrounding hurricanes. Their work could lead to better methods of forecasting the paths of the deadly storms.



In their study, FSU meteorologists Xiaolei Zou and Yonghui Wu found that variations of ozone levels from the surface of the ocean to the upper atmosphere are closely related to the formation, intensification and movement of a hurricane. In studying meteorological data from 12 such storms, Zou and Wu noticed that over an area of 100 miles, the area surrounding each hurricane typically had low levels of ozone from the surface to the top of the storm. Whenever the hurricane intensified, the ozone levels throughout the storm decreased even more.

In addition, when Zou and Wu examined hurricanes using the ozone data, the eye of the storms became very clear. Because forecasters always try to pinpoint the eye of the hurricane, this knowledge will help with locating a storm’s exact position and possibly lead to better tracking.


The National Oceanic and Atmospheric Administration’s National Hurricane Center (NHC) is the agency that issues hurricane forecasts. Of the 12 storms analyzed, the ozone data and the NHC official report differed on the mean distance between the estimated eye by less than 18 miles during the most intense stage of the storms. When Zou and Wu added the satellite-observed ozone levels around a hurricane into a computer forecast model, the model greatly improved the predicted track that the hurricane would take.

"This research highlights the benefits of Total Ozone Mapping Spectrometer (TOMS) data in hurricane track and intensity prediction, an important forecasting problem since hurricanes often strike regions of high population and property growth, resulting in large natural disasters," said Zou.

Another interesting finding from Zou and Wu’s research is that ozone levels give a clue that a storm will develop before other methods do. The early spin of a tropical cyclone is weak and sometimes covered by clouds, and not easily detected by satellites that provide pictures of clouds. The ozone data gives scientists a "look beyond the clouds."

Ozone is all around the world and in the upper and lower atmosphere. Ozone in the upper atmosphere protects life on Earth from harmful ultraviolet rays from the sun, which can cause sunburn and skin cancer in humans. Ozone close to the surface is a pollutant; on hot, humid days with little wind, it creates a haze, such as that over big cities, that is harmful to breathe.

By using NASA’s satellite Earth Probe/TOMS total ozone data, forecasters can identify ozone amounts that are closely related to the formation, intensification and movement of a hurricane. Zou and Wu also found a strong relationship between ozone, air pressure and spin within the hurricanes.

Zou said that the connections between ozone levels and hurricane behavior are a very important step in understanding the storms. For more information and images about this research, please see: www.nasa.gov/vision/earth/environment/ozone_drop.html

Xiaolei Zou | EurekAlert!
Further information:
http://www.fsu.com

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>