Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Cloud Detectives

09.06.2005


Researchers at the University of Leicester have developed a cloud detection system which will lead to them gaining a better understanding of greenhouse gases.



The team in the Earth Observation Science Group have identified a method that eliminates inaccuracies in monitoring how dynamics, radiation and chemical processes interact and control greenhouse gas distributions, and how industrial and human activities affect them.

The UK has invested £300 million in instruments onboard the European Space Agency’s largest satellite, ENVISAT, which is dedicated to observing land, ocean, ice and the atmosphere.


The Leicester Earth Observation Science group is using an atmospheric instrument on ENVISAT called MIPAS, to study the vertical ‘profiles’ of greenhouse gases in the atmosphere.

As ENVISAT orbits the Earth every 100 minutes, the MIPAS collects atmospheric emission spectra from which the unique “signature” of various gases can be retrieved.

However, as the tropical Upper Troposphere has a high cloud occurrence frequency (between 40 and 60%) it can result in inaccurate concentration retrievals due to cloud contamination of measured spectra.

The cloud detection scheme developed at the University of Leicester identifies cloud-free MIPAS data, so that ‘decontaminated’ water vapour and ozone information can be used to study key regions of the tropical atmosphere.

The Leicester team has already found:

Ozone enhancement over Equatorial Africa, which may be caused by biomass burning or transport. This moves through the Upper Troposphere (UT) and Lower Stratosphere (LS) (collectively called the UTLS).

The strong presence of high altitude sub-visible cloud (which cannot be seen with the naked eye) over South America, Africa, Indonesia and Darwin and the Pacific Ocean.

Large variability in UTLS water vapour, particularly an intensely dry atmosphere over Indonesia compared to the rest of the tropical UTLS. The mechanisms of how this feature occurs are still unknown.

This Leicester research will make a contribution to a major international aircraft field campaign called SCOUT- O3 that will take place in Darwin, Australia, in November 2005.

The Earth Observation Science group at the University of Leicester will be part of the satellite support team, aid pre-flight analysis and be responsible for providing greenhouse gas and cloud information to complement aircraft and balloon measurements of the tropical UTLS.

Postgraduate research student Harjinder Sembhi explained the significance of the research:

“The tropical lower atmosphere from 10 to 21 km altitude is a significant and fascinating region of the Earth’s atmosphere, which is unfortunately very poorly monitored by ground and air-based atmospheric instruments.

“Ozone above 20 km acts as a protective shield from harmful ultraviolet radiation. However in the troposphere it is a greenhouse gas and has the ability to affect the concentrations of other important greenhouse gases in this region. It is therefore essential to study the distribution of these gases in the tropical UTLS to help understand their impact on the global atmosphere and climate.”

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>