Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Cloud Detectives

09.06.2005


Researchers at the University of Leicester have developed a cloud detection system which will lead to them gaining a better understanding of greenhouse gases.



The team in the Earth Observation Science Group have identified a method that eliminates inaccuracies in monitoring how dynamics, radiation and chemical processes interact and control greenhouse gas distributions, and how industrial and human activities affect them.

The UK has invested £300 million in instruments onboard the European Space Agency’s largest satellite, ENVISAT, which is dedicated to observing land, ocean, ice and the atmosphere.


The Leicester Earth Observation Science group is using an atmospheric instrument on ENVISAT called MIPAS, to study the vertical ‘profiles’ of greenhouse gases in the atmosphere.

As ENVISAT orbits the Earth every 100 minutes, the MIPAS collects atmospheric emission spectra from which the unique “signature” of various gases can be retrieved.

However, as the tropical Upper Troposphere has a high cloud occurrence frequency (between 40 and 60%) it can result in inaccurate concentration retrievals due to cloud contamination of measured spectra.

The cloud detection scheme developed at the University of Leicester identifies cloud-free MIPAS data, so that ‘decontaminated’ water vapour and ozone information can be used to study key regions of the tropical atmosphere.

The Leicester team has already found:

Ozone enhancement over Equatorial Africa, which may be caused by biomass burning or transport. This moves through the Upper Troposphere (UT) and Lower Stratosphere (LS) (collectively called the UTLS).

The strong presence of high altitude sub-visible cloud (which cannot be seen with the naked eye) over South America, Africa, Indonesia and Darwin and the Pacific Ocean.

Large variability in UTLS water vapour, particularly an intensely dry atmosphere over Indonesia compared to the rest of the tropical UTLS. The mechanisms of how this feature occurs are still unknown.

This Leicester research will make a contribution to a major international aircraft field campaign called SCOUT- O3 that will take place in Darwin, Australia, in November 2005.

The Earth Observation Science group at the University of Leicester will be part of the satellite support team, aid pre-flight analysis and be responsible for providing greenhouse gas and cloud information to complement aircraft and balloon measurements of the tropical UTLS.

Postgraduate research student Harjinder Sembhi explained the significance of the research:

“The tropical lower atmosphere from 10 to 21 km altitude is a significant and fascinating region of the Earth’s atmosphere, which is unfortunately very poorly monitored by ground and air-based atmospheric instruments.

“Ozone above 20 km acts as a protective shield from harmful ultraviolet radiation. However in the troposphere it is a greenhouse gas and has the ability to affect the concentrations of other important greenhouse gases in this region. It is therefore essential to study the distribution of these gases in the tropical UTLS to help understand their impact on the global atmosphere and climate.”

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>