Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Cloud Detectives

09.06.2005


Researchers at the University of Leicester have developed a cloud detection system which will lead to them gaining a better understanding of greenhouse gases.



The team in the Earth Observation Science Group have identified a method that eliminates inaccuracies in monitoring how dynamics, radiation and chemical processes interact and control greenhouse gas distributions, and how industrial and human activities affect them.

The UK has invested £300 million in instruments onboard the European Space Agency’s largest satellite, ENVISAT, which is dedicated to observing land, ocean, ice and the atmosphere.


The Leicester Earth Observation Science group is using an atmospheric instrument on ENVISAT called MIPAS, to study the vertical ‘profiles’ of greenhouse gases in the atmosphere.

As ENVISAT orbits the Earth every 100 minutes, the MIPAS collects atmospheric emission spectra from which the unique “signature” of various gases can be retrieved.

However, as the tropical Upper Troposphere has a high cloud occurrence frequency (between 40 and 60%) it can result in inaccurate concentration retrievals due to cloud contamination of measured spectra.

The cloud detection scheme developed at the University of Leicester identifies cloud-free MIPAS data, so that ‘decontaminated’ water vapour and ozone information can be used to study key regions of the tropical atmosphere.

The Leicester team has already found:

Ozone enhancement over Equatorial Africa, which may be caused by biomass burning or transport. This moves through the Upper Troposphere (UT) and Lower Stratosphere (LS) (collectively called the UTLS).

The strong presence of high altitude sub-visible cloud (which cannot be seen with the naked eye) over South America, Africa, Indonesia and Darwin and the Pacific Ocean.

Large variability in UTLS water vapour, particularly an intensely dry atmosphere over Indonesia compared to the rest of the tropical UTLS. The mechanisms of how this feature occurs are still unknown.

This Leicester research will make a contribution to a major international aircraft field campaign called SCOUT- O3 that will take place in Darwin, Australia, in November 2005.

The Earth Observation Science group at the University of Leicester will be part of the satellite support team, aid pre-flight analysis and be responsible for providing greenhouse gas and cloud information to complement aircraft and balloon measurements of the tropical UTLS.

Postgraduate research student Harjinder Sembhi explained the significance of the research:

“The tropical lower atmosphere from 10 to 21 km altitude is a significant and fascinating region of the Earth’s atmosphere, which is unfortunately very poorly monitored by ground and air-based atmospheric instruments.

“Ozone above 20 km acts as a protective shield from harmful ultraviolet radiation. However in the troposphere it is a greenhouse gas and has the ability to affect the concentrations of other important greenhouse gases in this region. It is therefore essential to study the distribution of these gases in the tropical UTLS to help understand their impact on the global atmosphere and climate.”

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Earth Sciences:

nachricht Northern oceans pumped CO2 into the atmosphere
27.03.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

nachricht Weather extremes: Humans likely influence giant airstreams
27.03.2017 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>