Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ethiopian Ocean of The Future

09.06.2005


Research at the University of Leicester Department of Geology is confirming how a plume of hot mantle rock rising beneath Africa is splitting the continental crust apart and driving a plate tectonic sequence that could eventually form a new ocean in Ethiopia.

The extending East African Rift is a 3,000 kilometre crack in the Earth’s surface, stretching from Malawi in the south, through Tanzania, Kenya and Ethiopia, connecting with the Red Sea and the Gulf of Aden.

The character of the Rift changes from a faulted rift valley in Kenya, becoming more like a mid-ocean ridge in the northern Afar Depression, where magma rises to create the floor of an embryonic ocean.



Ethiopia lies in the transitional stage between the two, and studying the geological processes, structure and history of the magmatic Ethiopian Rift provides vital information about how a new ocean is formed.

Project EAGLE (the Ethiopia Afar Geoscientific Lithospheric Experiment) is a major earth science project in Africa looking at this process. Professor Peter Maguire, of the University of Leicester Department of Geology, is one of the leaders of this project, which is a collaboration between the Universities of Leicester, Leeds and Royal Holloway, London, as well as the University of Texas (El Paso) and Stanford, California, together with the University of Addis Ababa, Ethiopia.

The project, funded by the Natural Environment Research Council, aims to see deep into the Earth by using large seismic arrays to record natural earth tremors and vibrations from explosive charges detonated in boreholes. In addition, precise measurements of the Earth’s gravity field help to produce a 2D image of the Rift structure to a depth of almost 100 km.

Dave Cornwell, a geophysics PhD student working with Professor Maguire said:

“The Ethiopian Rift is where it’s all happening in one place – you have volcanoes, earthquakes, classic rift valley faults and complex geology. It’s one of a few places in the world where we can examine how geological processes combine to break up a continent.”

His research has found that the central Ethiopian rift structure is characterised by near-surface intrusions up to 20 km wide, consisting of dense igneous rock that originated in the upper mantle (at a depth of over 50 km).

Earthquake analyses have constrained the location and extent of the hot mantle plume immediately beneath the crust and his work has also identified zones in the crust including small amounts of molten rock beneath the rift itself, that have emerged from this plume.

This indicates that oceanic processes are apparently becoming dominant in this transitional stage of rifting, as a hot plume deep in the mantle causes melting then upwelling of buoyant molten rocks that cool in the form of elongated dykes in the crust. Dave Cornwell added:

“My results help to show that the Ethiopian Rift has matured from a purely continental rift, stretched and faulted by plate tectonic stresses, to a rift with a continental framework that is being injected with the molten rock. This represents the first few bricks in building a new ocean floor. It’s just a shame that it will take millions of years to complete!”

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>