Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ethiopian Ocean of The Future

09.06.2005


Research at the University of Leicester Department of Geology is confirming how a plume of hot mantle rock rising beneath Africa is splitting the continental crust apart and driving a plate tectonic sequence that could eventually form a new ocean in Ethiopia.

The extending East African Rift is a 3,000 kilometre crack in the Earth’s surface, stretching from Malawi in the south, through Tanzania, Kenya and Ethiopia, connecting with the Red Sea and the Gulf of Aden.

The character of the Rift changes from a faulted rift valley in Kenya, becoming more like a mid-ocean ridge in the northern Afar Depression, where magma rises to create the floor of an embryonic ocean.



Ethiopia lies in the transitional stage between the two, and studying the geological processes, structure and history of the magmatic Ethiopian Rift provides vital information about how a new ocean is formed.

Project EAGLE (the Ethiopia Afar Geoscientific Lithospheric Experiment) is a major earth science project in Africa looking at this process. Professor Peter Maguire, of the University of Leicester Department of Geology, is one of the leaders of this project, which is a collaboration between the Universities of Leicester, Leeds and Royal Holloway, London, as well as the University of Texas (El Paso) and Stanford, California, together with the University of Addis Ababa, Ethiopia.

The project, funded by the Natural Environment Research Council, aims to see deep into the Earth by using large seismic arrays to record natural earth tremors and vibrations from explosive charges detonated in boreholes. In addition, precise measurements of the Earth’s gravity field help to produce a 2D image of the Rift structure to a depth of almost 100 km.

Dave Cornwell, a geophysics PhD student working with Professor Maguire said:

“The Ethiopian Rift is where it’s all happening in one place – you have volcanoes, earthquakes, classic rift valley faults and complex geology. It’s one of a few places in the world where we can examine how geological processes combine to break up a continent.”

His research has found that the central Ethiopian rift structure is characterised by near-surface intrusions up to 20 km wide, consisting of dense igneous rock that originated in the upper mantle (at a depth of over 50 km).

Earthquake analyses have constrained the location and extent of the hot mantle plume immediately beneath the crust and his work has also identified zones in the crust including small amounts of molten rock beneath the rift itself, that have emerged from this plume.

This indicates that oceanic processes are apparently becoming dominant in this transitional stage of rifting, as a hot plume deep in the mantle causes melting then upwelling of buoyant molten rocks that cool in the form of elongated dykes in the crust. Dave Cornwell added:

“My results help to show that the Ethiopian Rift has matured from a purely continental rift, stretched and faulted by plate tectonic stresses, to a rift with a continental framework that is being injected with the molten rock. This represents the first few bricks in building a new ocean floor. It’s just a shame that it will take millions of years to complete!”

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>