Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ozone levels drop when hurricanes are strengthening

08.06.2005


Scientists are continually exploring different aspects of hurricanes to increase the understanding of how they behave. Recently, NASA-funded scientists from Florida State University looked at ozone around hurricanes and found that ozone levels drop as a hurricane is intensifying.



In a recent study, Xiaolei Zou and Yonghui Wu, researchers at Florida State University found that variations of ozone levels from the surface to the upper atmosphere are closely related to the formation, intensification and movement of a hurricane.

They studied ozone levels in 12 hurricanes and looked at total ozone levels, that is, from the ground to the upper atmosphere. Now scientists have clues on how a hurricane behaves when the ozone levels are high and low.


Zou and Wu noticed that over 100 miles, the area of a hurricane typically has low levels of ozone from the surface to the top of the hurricane. Whenever a hurricane intensifies, it appears that the ozone levels throughout the storm decrease. When they looked at the storm with ozone data a hurricane’s eye becomes very clear. Because forecasters always try to pinpoint the eye of the hurricane, this knowledge will help with locating the exact position and lead to better tracking.

The National Oceanic and Atmospheric Administration’s National Hurricane Center (NHC) is the agency that issues hurricane forecasts. Out of the 12 storms analyzed, the ozone data and the NHC official report differed on the mean distance between the estimated eye by less than 18 miles during the most intense stage of the storms. As such, when Zou and Wu added the satellite observed ozone levels around a hurricane into a computer forecast model, it greatly improved the predicted track that the hurricane would take.

"This research highlights the benefits of Total Ozone Mapping Spectrometer (TOMS) data in hurricane track and intensity prediction, an important forecasting problem since hurricanes strike regions of high population and property growth, resulting in large natural disasters," said Zou.

The other interesting finding when analyzing ozone data around hurricanes, is that ozone levels give a clue that a storm will develop before other methods. The early spin of a tropical cyclone is weak and sometimes covered by clouds, and not easily detected by satellites that provide pictures of clouds. The ozone data gives scientists a "look beyond the clouds."

Ozone is all around the world and in the upper and lower atmosphere. Ozone in the upper atmosphere protects life on Earth from harmful ultraviolet rays from the sun, which can cause sunburn and skin cancer. Ozone close to the surface is a pollutant, which on hot, humid days with little wind creates a haze, such as that over big cities, that is harmful to breathe.

By using NASA’s satellite Earth Probe/ TOMS total ozone data, forecasters can identify ozone amounts that are closely related to the formation, intensification, and movement of a hurricane. Zou and Wu also found a strong relationship between ozone, air pressure and spin within the hurricanes.

Zou said that the connections between ozone levels and hurricane behavior are a very important step in understanding the storms.

Rob Gutro | EurekAlert!
Further information:
http://www.gsfc.nasa.gov

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>