Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ozone levels drop when hurricanes are strengthening

08.06.2005


Scientists are continually exploring different aspects of hurricanes to increase the understanding of how they behave. Recently, NASA-funded scientists from Florida State University looked at ozone around hurricanes and found that ozone levels drop as a hurricane is intensifying.



In a recent study, Xiaolei Zou and Yonghui Wu, researchers at Florida State University found that variations of ozone levels from the surface to the upper atmosphere are closely related to the formation, intensification and movement of a hurricane.

They studied ozone levels in 12 hurricanes and looked at total ozone levels, that is, from the ground to the upper atmosphere. Now scientists have clues on how a hurricane behaves when the ozone levels are high and low.


Zou and Wu noticed that over 100 miles, the area of a hurricane typically has low levels of ozone from the surface to the top of the hurricane. Whenever a hurricane intensifies, it appears that the ozone levels throughout the storm decrease. When they looked at the storm with ozone data a hurricane’s eye becomes very clear. Because forecasters always try to pinpoint the eye of the hurricane, this knowledge will help with locating the exact position and lead to better tracking.

The National Oceanic and Atmospheric Administration’s National Hurricane Center (NHC) is the agency that issues hurricane forecasts. Out of the 12 storms analyzed, the ozone data and the NHC official report differed on the mean distance between the estimated eye by less than 18 miles during the most intense stage of the storms. As such, when Zou and Wu added the satellite observed ozone levels around a hurricane into a computer forecast model, it greatly improved the predicted track that the hurricane would take.

"This research highlights the benefits of Total Ozone Mapping Spectrometer (TOMS) data in hurricane track and intensity prediction, an important forecasting problem since hurricanes strike regions of high population and property growth, resulting in large natural disasters," said Zou.

The other interesting finding when analyzing ozone data around hurricanes, is that ozone levels give a clue that a storm will develop before other methods. The early spin of a tropical cyclone is weak and sometimes covered by clouds, and not easily detected by satellites that provide pictures of clouds. The ozone data gives scientists a "look beyond the clouds."

Ozone is all around the world and in the upper and lower atmosphere. Ozone in the upper atmosphere protects life on Earth from harmful ultraviolet rays from the sun, which can cause sunburn and skin cancer. Ozone close to the surface is a pollutant, which on hot, humid days with little wind creates a haze, such as that over big cities, that is harmful to breathe.

By using NASA’s satellite Earth Probe/ TOMS total ozone data, forecasters can identify ozone amounts that are closely related to the formation, intensification, and movement of a hurricane. Zou and Wu also found a strong relationship between ozone, air pressure and spin within the hurricanes.

Zou said that the connections between ozone levels and hurricane behavior are a very important step in understanding the storms.

Rob Gutro | EurekAlert!
Further information:
http://www.gsfc.nasa.gov

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

The material that obscures supermassive black holes

26.09.2017 | Physics and Astronomy

Ageless ears? Elderly barn owls do not become hard of hearing

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>