Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Permanent deep-sea seismic sensors

07.06.2005


A submarine seismic sensor was recently set in place at 2400 m depth, off Toulon. The instrument was attached to a neutrino telescope developed by the international scientific programme Antares (1) . For the first time in Europe, this sensor, designed by a partnership between Géosciences Azur (Mixed Research Unit IRD/CNRS/UPMC/UNSA, Villefranche sur Mer)(2) and Guralp System (United Kingdom), with the financial support of INSU, Villefranche Oceanological Observatory and the Provence-Alpes-Côte d’Azur Regional Council, can send real-time deep-sea seismic activity data recorded for the region and for the whole world.



Deployment of this broad-band sensor by the IFREMER ROV (3) "Victor" allows testing of the installation parameters necessary for accurate observation of earthquakes that occur locally, within the region or elsewhere throughout the globe. The project has also resulted in new developments in deep-ocean technology and skills.

Three great challenges face scientists in efforts to achieve high-quality long-term observation: resistance of instruments and cables to enormous deep-sea water pressures; resistance of instruments to corrosion in the marine environment; and perfect coherence between the equipment and the electronic systems incorporated to ensure remote control and monitoring.


The Antares programme conducted off Toulon, for which the CPPM (4) at Marseille-Luminy University is the host laboratory, gave the Géosciences Azur team a unique opportunity to take up these challenges and develop seismological techniques that could subsequently be ’exported’ for application in the world’s earthquake zones. In several coastal regions of the globe, seismic risk comes from strong submarine earthquakes that can occur. Accurate study of such activity is therefore important for devising improved risk-assessment systems. That is why marine sensors are necessary.

The observation tools scientists currently have at their disposal for conducting research programmes are stand-alone seismological sensors or OBSs (Ocean Bottom Seismometers), cast off from the surface with their batteries and built-in memory which confers several months’ recording capacity. They come to rest freely on the ocean floor. At the end of the prescribed recording period they are brought to the surface by remote control. However, data analysis cannot be performed until the seismometer has been retrieved.

Even though it is not a means of earthquake prediction, seismological surveillance can allow rapid assessment of an event’s magnitude and location; and hence of their impact. It requires real-time transmission of data provided by the sensor networks in place.

In this aspect too, the experiment under way is bringing with it an improvement in reliability of the technological systems used: digital ground movement recordings made by the sensor are transmitted by a 40 km long cable which links all the elements of the Antares experiment to the coast; from there they are relayed by the Internet to the Géosciences Azur laboratory.

The laboratory’s next objective is to deploy a similar sensor in the Ligurian Sea in order to complete its regional earthquake watch system.

Notes

1. Antares is a joint research venture between 14 European laboratories. In France it brings together researchers, engineers and technicians from the CEA (DSM/Dapnia), the CNRS (IN2P3 and INSU), universities –of Toulon and the Var (La Garde), the Mediterranean (Marseille), Haute-Alsace (Mulhouse), Denis Diderot Paris 7 (Paris) and Louis Pasteur (Strasburg) – as well as marine environment and technology experts from IFREMER. The project is financed by contributions from: the CEA (DSM/Dapnia) and the CNRS/IN2P3; the Regional Councils of Alsace, Provence-Alpes-Côte d’Azur ; the council of the Département du Var; the town of La Seyne-sur-Mer; the European Union; and five countries (Netherlands, Germany, Italy, Spain, Russia).

2. Institut de recherche pour le développement (IRD), Centre national de la recherche scientifique (CNRS), University of Nice-Sophia Antipolis (UNSA) and the Pierre et Marie Curie University of Paris (UPMC).

3. Remotely Operated Vehicle: submersible remote-controlled from the surface.

4. Centre de physique des particules de Marseille, Mixed Research Unit (CNRS/IN2P3 and the University of the Mediterranean).

Hélène Deval | EurekAlert!
Further information:
http://www.ird.fr

More articles from Earth Sciences:

nachricht Heavy nitrogen molecules reveal planetary-scale tug-of-war
20.11.2017 | Rice University

nachricht Colorado River's connection with the ocean was a punctuated affair
16.11.2017 | University of Oregon

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Carefully crafted light pulses control neuron activity

20.11.2017 | Life Sciences

SYSTEMS INTEGRATION 2018 in Switzerland focuses on building blocks for industrial digitalization

20.11.2017 | Trade Fair News

Heavy nitrogen molecules reveal planetary-scale tug-of-war

20.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>