Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Permanent deep-sea seismic sensors

07.06.2005


A submarine seismic sensor was recently set in place at 2400 m depth, off Toulon. The instrument was attached to a neutrino telescope developed by the international scientific programme Antares (1) . For the first time in Europe, this sensor, designed by a partnership between Géosciences Azur (Mixed Research Unit IRD/CNRS/UPMC/UNSA, Villefranche sur Mer)(2) and Guralp System (United Kingdom), with the financial support of INSU, Villefranche Oceanological Observatory and the Provence-Alpes-Côte d’Azur Regional Council, can send real-time deep-sea seismic activity data recorded for the region and for the whole world.



Deployment of this broad-band sensor by the IFREMER ROV (3) "Victor" allows testing of the installation parameters necessary for accurate observation of earthquakes that occur locally, within the region or elsewhere throughout the globe. The project has also resulted in new developments in deep-ocean technology and skills.

Three great challenges face scientists in efforts to achieve high-quality long-term observation: resistance of instruments and cables to enormous deep-sea water pressures; resistance of instruments to corrosion in the marine environment; and perfect coherence between the equipment and the electronic systems incorporated to ensure remote control and monitoring.


The Antares programme conducted off Toulon, for which the CPPM (4) at Marseille-Luminy University is the host laboratory, gave the Géosciences Azur team a unique opportunity to take up these challenges and develop seismological techniques that could subsequently be ’exported’ for application in the world’s earthquake zones. In several coastal regions of the globe, seismic risk comes from strong submarine earthquakes that can occur. Accurate study of such activity is therefore important for devising improved risk-assessment systems. That is why marine sensors are necessary.

The observation tools scientists currently have at their disposal for conducting research programmes are stand-alone seismological sensors or OBSs (Ocean Bottom Seismometers), cast off from the surface with their batteries and built-in memory which confers several months’ recording capacity. They come to rest freely on the ocean floor. At the end of the prescribed recording period they are brought to the surface by remote control. However, data analysis cannot be performed until the seismometer has been retrieved.

Even though it is not a means of earthquake prediction, seismological surveillance can allow rapid assessment of an event’s magnitude and location; and hence of their impact. It requires real-time transmission of data provided by the sensor networks in place.

In this aspect too, the experiment under way is bringing with it an improvement in reliability of the technological systems used: digital ground movement recordings made by the sensor are transmitted by a 40 km long cable which links all the elements of the Antares experiment to the coast; from there they are relayed by the Internet to the Géosciences Azur laboratory.

The laboratory’s next objective is to deploy a similar sensor in the Ligurian Sea in order to complete its regional earthquake watch system.

Notes

1. Antares is a joint research venture between 14 European laboratories. In France it brings together researchers, engineers and technicians from the CEA (DSM/Dapnia), the CNRS (IN2P3 and INSU), universities –of Toulon and the Var (La Garde), the Mediterranean (Marseille), Haute-Alsace (Mulhouse), Denis Diderot Paris 7 (Paris) and Louis Pasteur (Strasburg) – as well as marine environment and technology experts from IFREMER. The project is financed by contributions from: the CEA (DSM/Dapnia) and the CNRS/IN2P3; the Regional Councils of Alsace, Provence-Alpes-Côte d’Azur ; the council of the Département du Var; the town of La Seyne-sur-Mer; the European Union; and five countries (Netherlands, Germany, Italy, Spain, Russia).

2. Institut de recherche pour le développement (IRD), Centre national de la recherche scientifique (CNRS), University of Nice-Sophia Antipolis (UNSA) and the Pierre et Marie Curie University of Paris (UPMC).

3. Remotely Operated Vehicle: submersible remote-controlled from the surface.

4. Centre de physique des particules de Marseille, Mixed Research Unit (CNRS/IN2P3 and the University of the Mediterranean).

Hélène Deval | EurekAlert!
Further information:
http://www.ird.fr

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>