Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Indian Ocean earthquake data suggest disaster warnings too conservative

20.05.2005


The December earthquake and tsunami that killed approximately 300,000 people in the Indian Ocean region was so powerful that no point on Earth went undisturbed, pointing to the need for more active warnings about the consequences of future events, according to University of Colorado at Boulder seismologist Roger Bilham.



Bilham offers his perspective in "A Flying Start, Then a Slow Slip," an overview of findings on the Sumatra-Andaman earthquake published in the May 20 issue of Science Magazine. The issue also includes four technical papers by other authors describing the complex rupture process of the earthquake.

"No point on Earth remained undisturbed at the centimeter level," Bilham said. "The earthquake’s uplift reduced the capacity of the Bay of Bengal and the Andaman Sea, raising sea level around the world by about .1 millimeter.


"If not for the remarkably slow plate movement at the northern end of the earthquake, there might have been much more widespread and severe damage on the coasts of India, Myanmar and Thailand," Bilham said.

Two years ago, Bilham published a study of an 1881 earthquake in the same region and predicted that a similar event could occur sometime between 2004 and 2054. Bilham didn’t anticipate the strength of the 2004 event, though, and said officials need to consider extreme worst-case scenarios as well as more probable earthquake scenarios.

"The region has a history of major earthquakes, including ones in 1833 and 1861. Regardless, there was no precedent for the complexity and magnitude of the 2004 earthquake. This should be a wake-up call that conservative seismic forecasts may not serve society well," he said.

"This earthquake happened at the worst possible time – on a very popular holiday when many people were at the beach instead of at work or in school, and at high tide in India, which increased the tsunami run-up there by one meter," Bilham said.

The Dec. 26 quake was the second largest ever recorded, and the third most fatal in human history. The energy released was equivalent to a 100 giga-ton bomb, or the amount of energy consumed in the U.S. every six months, according to Bilham. "More than 30 cubic kilometers of water were displaced by the shifting sea floor, resulting in a tsunami that traveled as far away as the Antarctic, both coasts of the Americas and even the Arctic Ocean."

Using data recorded by digital seismometers all over the world, scientists were able to determine the direction and speed of the rupturing seafloor.

"The rupture opened lengthwise at 5,000 miles per hour during the first 10 minutes of the earthquake. Seismometers in Russia and Australia recorded the event like a noisy fire engine racing northward," Bilham said. He explained that Russian seismometers recorded higher frequency sounds than those recorded in Australia, revealing a seismic Doppler effect as the sound traveled away from Australia and toward Russia.

For seismologists including Bilham, this was the first catastrophic earthquake that could be analyzed using the latest and most sensitive scientific equipment. "As a result, we will learn numerous new things about our planet, and in particular about the Pacific Northwest, where a similar earthquake could occur at any time," he said.

Scientists believe that a major earthquake and tsunami hit the Pacific Northwest around 1700 along the Cascadia Subduction Zone and that the northwest will experience major quakes, and possibly tsunamis, in the future.

Roger Bilham | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>