Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellites join watch on Naples’ volcanic hinterland

18.05.2005


The world’s oldest volcano observatory has added satellites to its repertoire of instruments to monitor volcanic features flanking Naples. The result has been the most detailed view ever of ground motion in this vicinity.



When it was founded back in 1841, the Vesuvius Observatory of Italy’s National Institute of Geophysics and Volcanology was the world’s first scientific institution devoted to volcanoes. Now its remit is more than simply scientific: the Observatory’s 24-hour volcanic and geophysical monitoring makes it an official reference point for local and national civil protection authorities.

The historical site of the Observatory is located on the slopes of the active Vesuvius volcano, which stands east of the city of Naples and its surrounding metropolitan areas – the vulnerable home of three million people. To the west is another, unrelated volcanic feature, the cratered, smoky landscape of the Phlegrean Fields (known in Italian as Campi Flegrei).


According to the evacuation plan issued by the Civil Protection Department (Dipartimento della Protezione Civile, DPC) in 1995, it could take a week or more to evacuate everyone living in the vicinity of Mount Vesuvius in the event of new activity. This being so, continual monitoring is vital.

Since 2002, the Observatory has included satellite-derived data in its Surveillance Reports, an innovation following a project with ESA called MINERVA (Monitoring by Interferometric SAR of Environmental Risk in Volcanic Areas).

These space-based views of ground deformation across these volcanic areas agree well with ground-based measurements but extend across a wider area and are accurate to a sub-centimetre scale.

On 23-24 June the Vesuvius Observatory is hosting an English-language workshop on ’The Use of Remote Sensing Techniques for Monitoring Volcanoes and Seismogenetic Areas’, intended as a platform for exchanging experience of integrating Earth Observation-based information with traditional observation methods and models.

The workshop’s aim is to gather contributions on the experience of different groups in order to formulate technical and general requirements for future activities in this area, as ESA intends to integrate the needs of the geophysical/volcanological community into its future Earth Observation programmes.

Keeping watch from space on the Phlegrean Fields

With a diameter of 13 kilometres, the Phlegrean Fields caldera had its last eruption back in 1538 but has exhibited signs of unrest in recent years. Its underlying magma system remains active, leading to rapid periods of ground uplift followed by longer-term subsidence. The most recent uplift event occurred between March and August 2000.

Such ground motion needs accurate measuring. Geodetic ground networks can provide very high accuracy deformation information, but only within the network layout – any change in deformation beyond the area covered is lost.

The vertical component of ground motion is obtained through a geodetic technique called levelling, based on height measurements carried out on single points called benchmarks, which together constitute the levelling network. Levelling data is supplemented with GPS readings to provide 3-D measurements of motion.

However, levelling is costly in money and time. Obtaining measurements across a network is a lengthy process - the Phlegrean Fields network has more than 300 benchmarks – as is the consequent data processing. Typically levelling is only carried out once or twice a year.

Obtaining GPS results is somewhat cheaper and faster, but it still requires a week or more for precise measurements across the 25 vertices of the Phlegrean Fields GPS network. There is also a permanent eight-station GPS network in the area making continuous recordings, but its spatial coverage is limited for economical reasons. GPS measurements beyond it are only carried out every six months or less.

"Considering this frequency of field measurements, our need is to retrieve information with a higher temporal sampling," explained Sven Borgström of the Vesuvius Observatory. "Use of satellite data allows optimal coverage in both space and time – every 35 days in the case of ERS-2 or Envisat, against once or twice a year with GPS and levelling techniques."

It appears to be a paradox: how can a satellite 800 kilometres away in space measure ground motion to a detail comparable to GPS and leveling data acquired right down at the surface?

The answer lies in a technique called Synthetic Aperture Radar (SAR) Interferometry, or InSAR for short. InSAR involves mathematically combining two or more radar images of the same site. Any change to the total signal distance travelled (to the surface and back again) causes a shift in signal phase, leading in turn to rainbow-coloured interference fringes that run like contour lines across the resulting interferogram.

For a start this technique can be used to create highly accurate digital elevation models (DEMs), the combination of images working in the same way that human stereoscopic vision lends the illusion of depth.

Then, if relief images are subtracted from the resulting interferogram, (known as differential InSAR) the technique works like a mathematical version of ’spot the difference’ to highlight tiny changes occurring between acquisitions. Remaining interference fringes are interpreted to identify even the slightest ground motion occurring along the radar sensor line-of-sight.

A combined geodetic/InSAR approach has been applied to the study of the March-August 2000 Phlegrean Fields uplift event, using radar images from ESA’s ERS-2 satellite. InSAR shows a ground heightening of more than four centimetres occurring in that time. Crucially, the InSAR data corresponds to the levelling/GPS results in this case – as in all cases to date.

In addition, these results are part of a much larger InSAR dataset that enables researchers to pinpoint the time at the start of 2000 when subsidence turned to uplift. The combined ground-and-space data indicate a stasis after the 2000 uplift event, followed by the renewal of subsidence – a pattern typical of the area during the last two decades.

Knowledge from MINERVA

The ESA-funded MINERVA project, part of the Agency’s Earth Observation Data User Programme (DUP), was aimed at developing, demonstrating and assessing an information service based on SAR imagery from ERS-1, -2 and Envisat.

The project was based on a new InSAR data processing approach that optimized the quality of interferograms spanning from a 35 day interval up to several years, and to merge them to generate a single product describing the temporal evolution of deformation within the area under investigation.

As installed at the Vesuvius Observatory, MINERVA software allows this product to be updated each time a new SAR image becomes available. At the request of the Observatory, the software code has been adapted in order to achieve complete integration between InSAR and geodetic data, allowing a comparison between the two and retrieving information on deformation taking place between levelling/GPS measurements.

The Italian company Carlo Gavazzi Space was MINERVA prime contractor, with additional partners being the Italian National Research Council’s Institute for Electromagnetic Sensing of the Environment (CNR-IREA), the Delft Institute for Earth-Oriented Space Research at the Netherlands’ University of Technology (DEOS Delft TU) and the Netherlands National Aerospace Laboratory (NLR). MINERVA concluded in 2003.

Mariangela D’Acunto | EurekAlert!
Further information:
http://www.esa.int/esaEO/SEMB4Z5TI8E_planet_0.html

More articles from Earth Sciences:

nachricht Turning the Climate Tide by 2020
29.06.2017 | Potsdam-Institut für Klimafolgenforschung

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

High conductive foils enabling large area lighting

29.06.2017 | Power and Electrical Engineering

Designed proteins to treat muscular dystrophy

29.06.2017 | Life Sciences

Climate Fluctuations & Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialog

29.06.2017 | Seminars Workshops

VideoLinks
B2B-VideoLinks
More VideoLinks >>>