Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No Need To Fly To The Moon For Lunar Soil

17.05.2005


It is not necessary to fly to the Moon to get lunar soil even if the sample is required from the other side of this planet. A meteorite originating from the other side of the Moon has recently got into the hands of scientists. The meteorite investigation required precision instruments and grants from the Russian Foundation for Basic Research and the Büro Für Wissenschaftlich-Technische Zusammenarbeit Des Österreichischer Austauschdienst (Bureau for Scientific and Technical Collabration of Austrian Exchange Service).



A piece of lunar soil (its weight being slightly less than one kilogram) was knocked out by a meteorite blow and later fell on the Earth. Judging by a microparticle of zircon mineral the specialists not only calculated its age, but also made conclusions about the event that had taken place on the Moon at that time. It has appeared that about 2 billion years ago the rock containing a particle of zircon endured some planetary cataclysm and melted, and 500 thousand years ago a piece of rock was thrown away from the lunar surface into space by a meteorite blow.

Meteorite Dhofar 025 was found in 2000 in the desert on the Arabian Peninsula (Oman). It weights 751 grams and consists of breccia - sintered fragments of various minerals from lunar continents. Several years were spent on investigation of this celestial stone. To determine its age, the researchers of four Russia institutes jointly with Austrian colleagues found a microscopical grain of zircon in it – the mineral consisting of oxides of zirconium, lead, thorium and uranium.


The isotopic composition in the two sections of this tiny speck was investigated on the SHRIMP mass-spectrometer. The researchers were interested in ratio of stable isotopes of lead 206, 207, 208 and radioactive isotopes of uranium - 238 and 235. The grain was extracted from the core of meteorite, i.e. it had been isolated from the environment while the meteorite was lying on the Earth. That allowed the researchers to compare quantitative ratios of isotopes with known and dated rocks of the Earth and the Moon and to determine the age of meteorite. On the Earth, for example, zircon contained in gabbro from Eastern Australia was accepted as the standard for the uranium-lead relation.

Geochemists discovered that zircon from Dhofar 025 was of the same age as others, already known lunar rocks – i.e. 4.3 to 4.4 billion years, but its composition had changed approximately 2 billion years ago. Most likely, that is the consequence of a powerful blow by a meteorite, as a result breccia was formed out of granite which contained zircon being investigated. This result, by the way, coincided with radiation age of meteorite calculated by isotopes of noble gases. Breccia was formed and carried out to the surface of the planet as a result of some catastrophe, and gases started to accumulate in it . However, that was not the meteorite bombardment well-known to researchers, to which the visible part of the Moon was exposed to 3.9 billion years ago. Consequently, the specialists believe that Dhofar 025 is nothing but a sample of lunar soil from the other part of the planet.

It is not for the first time that lunar meteorites were found in the region of Dhofar. Among the findings are, for example, Dhofar 305, 307 and others. Altogether, there were about 50 such meteorites found on the Earth. However, within thousands of years spent on the Earth with its oxygen atmosphere, under rain and sunshine, with temperature differences and in contacts with microorganisms that excrete deleterious substances, debris of the moon became gradually destroyed and by our time it turned out to be fairly contaminated by “terrestrial” atoms, it oxidized and lost part of original components. From this point of view, the integral Dhofar 025 meteorite is considered unique by the researchers.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>