Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No Need To Fly To The Moon For Lunar Soil

17.05.2005


It is not necessary to fly to the Moon to get lunar soil even if the sample is required from the other side of this planet. A meteorite originating from the other side of the Moon has recently got into the hands of scientists. The meteorite investigation required precision instruments and grants from the Russian Foundation for Basic Research and the Büro Für Wissenschaftlich-Technische Zusammenarbeit Des Österreichischer Austauschdienst (Bureau for Scientific and Technical Collabration of Austrian Exchange Service).



A piece of lunar soil (its weight being slightly less than one kilogram) was knocked out by a meteorite blow and later fell on the Earth. Judging by a microparticle of zircon mineral the specialists not only calculated its age, but also made conclusions about the event that had taken place on the Moon at that time. It has appeared that about 2 billion years ago the rock containing a particle of zircon endured some planetary cataclysm and melted, and 500 thousand years ago a piece of rock was thrown away from the lunar surface into space by a meteorite blow.

Meteorite Dhofar 025 was found in 2000 in the desert on the Arabian Peninsula (Oman). It weights 751 grams and consists of breccia - sintered fragments of various minerals from lunar continents. Several years were spent on investigation of this celestial stone. To determine its age, the researchers of four Russia institutes jointly with Austrian colleagues found a microscopical grain of zircon in it – the mineral consisting of oxides of zirconium, lead, thorium and uranium.


The isotopic composition in the two sections of this tiny speck was investigated on the SHRIMP mass-spectrometer. The researchers were interested in ratio of stable isotopes of lead 206, 207, 208 and radioactive isotopes of uranium - 238 and 235. The grain was extracted from the core of meteorite, i.e. it had been isolated from the environment while the meteorite was lying on the Earth. That allowed the researchers to compare quantitative ratios of isotopes with known and dated rocks of the Earth and the Moon and to determine the age of meteorite. On the Earth, for example, zircon contained in gabbro from Eastern Australia was accepted as the standard for the uranium-lead relation.

Geochemists discovered that zircon from Dhofar 025 was of the same age as others, already known lunar rocks – i.e. 4.3 to 4.4 billion years, but its composition had changed approximately 2 billion years ago. Most likely, that is the consequence of a powerful blow by a meteorite, as a result breccia was formed out of granite which contained zircon being investigated. This result, by the way, coincided with radiation age of meteorite calculated by isotopes of noble gases. Breccia was formed and carried out to the surface of the planet as a result of some catastrophe, and gases started to accumulate in it . However, that was not the meteorite bombardment well-known to researchers, to which the visible part of the Moon was exposed to 3.9 billion years ago. Consequently, the specialists believe that Dhofar 025 is nothing but a sample of lunar soil from the other part of the planet.

It is not for the first time that lunar meteorites were found in the region of Dhofar. Among the findings are, for example, Dhofar 305, 307 and others. Altogether, there were about 50 such meteorites found on the Earth. However, within thousands of years spent on the Earth with its oxygen atmosphere, under rain and sunshine, with temperature differences and in contacts with microorganisms that excrete deleterious substances, debris of the moon became gradually destroyed and by our time it turned out to be fairly contaminated by “terrestrial” atoms, it oxidized and lost part of original components. From this point of view, the integral Dhofar 025 meteorite is considered unique by the researchers.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Earth Sciences:

nachricht PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target
22.05.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>