Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plunge into warmer waters this summer with ESA’s Mediterranean heat map

17.05.2005


Summer in Europe means time for the beach. Testing the waters is a traditional holiday ritual: a swift hand or foot in the surf to check sea temperature. Or there is the modern approach – a flotilla of satellites identifying the warmest parts of all 2 965 500 square kilometres of the Mediterranean on a daily basis.



An updated map of the sea surface temperature (SST) of the world’s largest inland sea is generated every day as part of ESA’s Medspiration project, with an unprecedented spatial resolution of two square kilometres, high enough to detect detailed features like eddies, fronts and plumes within the surface temperature distribution.

The animation shows the last six months in the life of the Mediterranean, right up to yesterday, as the waters warm up from the depths of winter to the start of summer.


"Every day at 1200, a two-kilometre resolution map of SST is produced over the whole of the Mediterranean sea, " explains Gilles Larnicol of Medspiration partner CLS (Collecte Localisation Satellites). " This is the first time such a fine resolution has been reached, and a large number of satellite sensors are involved in the analysis method based on optimal interpolation. Medspiration uses data from six different sensors – two European, two American and two Japanese.

"The animation shows the winter cooling of SST that propagates eastward. Superimposed on this large-scale seasonal signal, we can also clearly observe the signature of well-known medium-sized or ’mesoscale’ structures.

"These include the Alboran gyre found east of Gibraltar and eddies in the Algerian and Levantine basins, in the west and east Mediterranean respectively. Lastly, the high resolution of the products allows us to detect small features such the discharge of the Po River into the Adriatic, which evolves as a steep coastal current along the Italian coastline."

Medspiration utilises data from the Advanced Along Track Scanning Radiometer (AATSR) on Envisat, the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) on Meteosat-8, two Advanced Very High Resolution Radiometer (AVHRR) sensors on US NOAA polar orbiters, and a pair of Japanese-built instruments, the Advanced Microwave Scanning Radiometer (AMSR) and TRMM TRMM Microwave Imager (TMI) instruments, aboard NASA’s Aqua and the JAXA-NASA Tropical Rainfall Measuring Mission (TRMM) spacecraft respectively.

Working like thermometers in the sky, these satellites measure SST on an ongoing basis. For example, Envisat’s AATSR uses infrared wavelengths to acquire SST for a square kilometre of ocean to an accuracy of 0.2°C. Other satellites may have decreased accuracy or resolution by comparison, but make up for it with cloud-piercing microwave abilities or much larger measuring ’footprints’.

Medspiration combines data from all these sensors to produce a reliable set of SST data, suitable for assimilation into ocean forecasting models of the waters around Europe and also the whole of the Atlantic Ocean (to a spatial resolution of ten square kilometres). SST is an important variable for weather forecasting and is increasingly seen as a key indicator of the extent of climate change.

Overall results from the Medspiration project feed into an even more ambitious scheme to combine all available SST data into a worldwide high-resolution product known as the Global Ocean Data Assimilation Experiment (GODAE) High-Resolution Sea Surface Temperature Pilot Project (GHRSST-PP).

Its aim is to deliver to the user community a new generation of highly accurate worldwide SST products with a spatial resolution of less than ten kilometres every six hours.

"Interpolated SST maps are of fundamental importance to improve marine weather forecasts," says Rosalira Santoleri of the Italian National Research Council (CNR), part of the Medspiration team. "They are operationally assimilated into numerical models and allow a better initialisation of the surface fields.

"Marine forecasts are essential for many aspects of risk management related to human activities in the ocean and along the seashore. This data promises to improve both oceanic and atmospheric forecasting, as well as our understanding of oceanic processes themselves."

ESA has initiated Medspiration as the European component of GHRSST-PP. It is also funding a GHRSST-PP International Project Office located at the Hadley Centre for Climate Prediction and Research, part of the UK Met Office in Exeter.

As well as ESA, CLS and CNR, the Medspiration team comprises the Southampton Oceanography Centre, the UK-based VEGA company, Meteo-France’s Centre for Space Meteorology, the French Research Institute for Exploitation of the Sea (IFREMER), the France-based Actimar firm and the Norwegian Meteorological Institute.

Mariangela D’Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEMRVT5TI8E_planet_0.html

More articles from Earth Sciences:

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Mars’ atmosphere well protected from the solar wind
08.12.2017 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>