Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Map of life on Earth could be used on Mars

11.05.2005


Finding the ’peculiar’ ancestor



A geologist from Washington University in St. Louis is developing new techniques to render a more coherent story of how primitive life arose and diverged on Earth — with implications for Mars.

Carrine Blank, Ph.D., Washington University assistant professor of earth and planetary sciences in Arts & Sciences, has some insight concerning terrestrial microbes that could lead to provocative conclusions about the nature of life on Mars and other planets.


Blank approaches the task by resolving phylogenetic trees. These trees, based upon genetic sequencing data, trace the genetic relationships between what we think of as primitive organisms through trait development. The relationships between early forms of life can illuminate the relationships between organisms present on Earth today — which fossil evidence and a method called isotopic fractionation have failed to show conclusively.

Blank most recently presented her research at the 2004 annual meeting of the Geological Society of America.

Haves and have-nots

Microorganisms can be divided into haves and have-nots: cells of eukaryotes contain a nucleus, while prokaryotic organisms cells do not. Prokaryotic organisms encompass archeal and bacterial domains of life. Archeal organisms diverge further into euryarcheota and Crenarcheota lineages. By piecing together genetic sequences of the three types of prokaryotic organisms, Blank creates a genetic flow chart, which can be interpreted to trace the appearance of environmental adaptations across billions of years of evolution.

Genes are inherited from parents, but can transfer from one organism to another without reproducing by a process called lateral gene transfer. Modular metabolic genes, which are not critical for cell production, account for most lateral gene transfers between microbes.

"There is a lot we’re beginning to understand in terms of bacterial evolution that is still not quite clear," Blank said. "What we’re trying to resolve is the evolutionary history of the core of the bacterial cell. The core is that which is not undergoing this lateral gene transfer, or does it extremely rarely."

Jumping genes

Jumping genes may be a headache for researchers, but they serve an important ecological purpose, helping other organisms to succeed in their habitats, and can illuminate trait development across the tree of life.

"We try to construct the core with gene sequences, and then we look at the distribution of traits such as those involved in metabolism by laying it onto the tree," she said.

Timely appearances of certain traits among prokaryotes on the tree of life can betray a trend of habitat divergence, facilitated by lateral gene transfer. The emergence of traits corresponding to measurable changes in the known geologic record allow researchers to date organisms with relative certainty. Blank can then use chronological data to analyze niche specialization, "where these organisms like to grow," among members of each life domain over geologic time.

Habitat divergence among bacteria is consistent with patterns of divergence among the other prokaryotes, Blank’s research shows. She notes a pervasive trend of cyanobacterial organisms diverging from low-salinity environments into marine environments over time.

"We have the ancestral Archeae — it diverges into two major lineages, the Crenarchaeota and the Euryarchaeota, one which grows in marine environments, the other on continents," Blank said. "They grow and diverge for perhaps a billion years, and then they start colonizing each other’s environments. The marine Euryarchaeota eventually colonize the terrestrial environments and the Crenarchaeota colonize the marine environments. My point is that it could have taken a very long time for them to come back and to form even more complex ecosystems. So the literal interpretation of these patterns is that early habitat specialization could have lasted for a billion years."

After mapping early habitat divergences onto the tree, Blank observes that the ancestors of each of the three kinds of prokaryotes inhabited one of Earth’s three types of hydrothermal systems, which include sulfurous steam vents like those which smatter the Yellowstone caldera, hydrothermal deep-sea vents, and boiling silica-depositing springs.

"Is it a coincidence, then, that we have three hydrothermal habitats and three major groups of prokaryotes? We aren’t sure," she said. "This could suggest that we have some really ancient habitat specialization. These lineages specialize in these three habitats, and diverge in these habitats for many hundreds of million years before they start moving into other types of habitats."

The ’peculiar’ ancestor

It isn’t clear why bacteria diversified later, though environmental changes, like periods of global glaciation nicknamed "snowball Earth," could have provided the impetus that demanded microbial adaptation. Whatever the cause, new adaptive microbial traits can be very different from those of their "peculiar" ancestors. It seems that, on some level, humans and bacteria can relate.

"If we see these major patterns of divergence on Earth, we should expect to see similar patterns on life on Mars, that is, if life ever existed there," Blank said. "Not the same patterns, because Mars has had a different history, but we should see trends that are analogous. You would expect to see a peculiar ancestor specialized to a unique niche, eventually diverging into descendants that have very different traits than their ancestor did. These descendents would have adapted to changes that would’ve happened in Mars’s history."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Earth Sciences:

nachricht AWI researchers measure a record concentration of microplastic in arctic sea ice
24.04.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Climate change in a warmer-than-modern world: New findings of Kiel Researchers
24.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>