Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Previously unknown fault provides new insights on Himalayan mountain building


MIT and Dartmouth scientists have identified a previously unrecognized, active fault in the Nepalese Himalayas. The discovery, published in the April 21 issue of Nature, provides new insights into how the mountains evolved and helps explain why the transition between the high Himalayan Ranges and their gently sloping foothills is so abrupt.

"This project started with the simple observation that the landscape of the central Nepalese Himalaya seems to be telling us something about deformation at depth in the Earth’s crust," said Cameron Wobus, lead author on the paper and a graduate student in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS).

"The interdisciplinary approach we’ve taken to the problem has confirmed this intuition, and has demonstrated the existence of a surface-breaking thrust fault many kilometers north of where most geologists believe active deformation is focused. It’s an exciting development and it forces us to think more creatively about how mountain ranges like the Himalaya evolve."

Wobus’ co-authors are EAPS Professors Kelin Whipple and Kip Hodges, and Assistant Professor Arjun Heimsath of Dartmouth.

The newly discovered fault is at the southern edge of the high Himalayan ranges in central Nepal, about 60 miles northwest of Katmandu. Farther south, the landscape is characterized by gently sloping hills. The researchers discovered that there is a sharp change in both erosion and rock uplift rates across the fault. The erosion rates to the north are four times higher than those to the south.

As a result, they speculate that there may be a feedback mechanism between erosion and tectonic deformation. Hodges notes that this is a new perspective on mountain building. "Rapid erosion related to the Indian monsoon is most intense at the approximate position of the newly discovered fault. Our hypothesis is that the modern geodynamics of the range front is indicative of coordinated high precipitation and active deformation. And it would be a very exciting development if we are right that deformational processes close to the surface of the Earth are interdependent with climatic processes."

Such a relationship is consistent with theory, according to Whipple, but "definitive field evidence for this sort of dynamic feedback has been elusive. Our work in Nepal moves us toward a better resolution of the strength of climate-tectonics interactions and the temporal and spatial scales over which they operate."

Elizabeth Thomson | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>