Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL, UC Berkeley unravel real-world clues to Earth’s mysteries

09.05.2005


A microbial community thriving under bizarre natural conditions in California could be a gold mine to researchers in their quest to understand the complex biological relationships and how these inner workings might apply on a grander scale.



In a paper to appear today on Science Online, researchers from the Department of Energy’s Oak Ridge National Laboratory and the University of California Berkeley describe a bacterial community that flourishes in the iron sulfide-rich runoff of the Richmond Mine near Redding. A pH level of 7 is considered neutral and most proteins prefer pH levels between 5 and 7. The water trickling from the mine has a pH of about 0.8 and a temperature of 107 degrees Fahrenheit.

"This microbial community is thriving at the extreme edge," said Bob Hettich, a co-author and member of ORNL’s Chemical Sciences Division. "A pH level of 0.8 is like swimming in sulfuric acid, so we’d like to know how this community can survive and how we might be able to use this information to better understand microbial systems in real-world conditions."


The work is significant on a number of levels, according to the research team, which noted that while microbial communities play key roles in the Earth’s bio-geochemical cycles, scientists know little about the structure and activities within these communities. This is because the commonly used artificially cultivated organisms lack the diversity found in nature, so potentially critical community and environmental interactions go unsampled.

Raymond Orbach, director of DOE’s Office of Science, noted that this research offers a glimpse of what will be possible in the near future. "This work illustrates the power of the genome sequencing done at the Department of Energy’s Joint Genome Institute to contribute to understanding the microbiological communities living at contaminated sites," Orbach said. "Now scientists can investigate not only the ’community genome,’ but also the resulting ’community proteome’ for enzymes and pathways that can help clean up some of the worst environmental sites in the nation. This underscores the value of basic research carried out by the DOE Genomics: Genomes to Life program that can develop novel approaches and solutions to national challenges."

Hettich said their results would not have been possible without the collaboration with UC Berkeley, where Jill Banfield is an expert in natural microbial communities. Banfield, a professor in the Department of Environmental Science, Policy and Management, has studied this particular acid mine drainage community for several years. Meanwhile, ORNL boasts world-class mass spectrometry instrumentation and its researchers have demonstrated success in obtaining proteome information on simple microbial organisms grown in the laboratory. Working as a team, UC Berkeley and ORNL have struck it rich.

"Through this collaboration, Jill Banfield has been able to take her research up a quantum step by obtaining the first glimpse into the complex proteome dataset of this microbial community," Hettich said. "To do this, it was critical that we bring together researchers with expertise in biology and ecology of microbial communities, analytical technologies and bioinformatics."

Banfield and colleagues at UC Berkeley supplied the bacterial samples and characterized genome information while Hettich and Nathan VerBerkmoes, a post-doctoral student in ORNL’s Chemical Sciences Division, performed the mass spectrometry work. Manesh Shah of ORNL’s Life Sciences Division was responsible for the informatics related to database searching and data dissemination. The team detected 2,036 proteins from the five most abundant species in the bio-film, including 48 percent of the predicted proteins from the most abundant bio-film organism, Leptosprillum group II.

Researchers noted that this work represents the first large-scale proteomics-level examination of a natural microbial community.

"As such, we are really among the leaders in this area, as evidenced by the strong interest in Science," Hettich said. "This is an area in which there is keen interest by many research groups; however, our team has been the most successful in obtaining detailed information from actual measurements."

Of particular interest to DOE is how this effort relates to its Genomes to Life program, which is focused on identifying and characterizing protein complexes, the molecular machines of life.

"Most of the current work looks at single microbial organisms grown under controlled laboratory conditions, but the longer-term plans are to extend this work to real-world microbial communities -- the natural state of these systems in the environment," Hettich said. "This goal is particularly difficult to reach due to the complexity and heterogeneity of the communities.

"However, the acid mine drainage microbial colony is an excellent starting point because it is a real-life natural world community with a limited number of members. Thus, we can measure and learn about microbial interactions and function distribution in a natural setting without being overwhelmed by an extremely large number of organisms."

The research team acknowledges that, although this study provides interesting details of microbial community structure and function, a great deal of work remains to more fully explore the spatial and temporal aspects of how such a community grows, ages and adapts to its environment.

Funding for this research was provided by DOE’s Office of Science, Office of Biological and Environmental Research, and by the National Science Foundation. Oak Ridge National Laboratory is managed for DOE by UT-Battelle.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>