Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL, UC Berkeley unravel real-world clues to Earth’s mysteries

09.05.2005


A microbial community thriving under bizarre natural conditions in California could be a gold mine to researchers in their quest to understand the complex biological relationships and how these inner workings might apply on a grander scale.



In a paper to appear today on Science Online, researchers from the Department of Energy’s Oak Ridge National Laboratory and the University of California Berkeley describe a bacterial community that flourishes in the iron sulfide-rich runoff of the Richmond Mine near Redding. A pH level of 7 is considered neutral and most proteins prefer pH levels between 5 and 7. The water trickling from the mine has a pH of about 0.8 and a temperature of 107 degrees Fahrenheit.

"This microbial community is thriving at the extreme edge," said Bob Hettich, a co-author and member of ORNL’s Chemical Sciences Division. "A pH level of 0.8 is like swimming in sulfuric acid, so we’d like to know how this community can survive and how we might be able to use this information to better understand microbial systems in real-world conditions."


The work is significant on a number of levels, according to the research team, which noted that while microbial communities play key roles in the Earth’s bio-geochemical cycles, scientists know little about the structure and activities within these communities. This is because the commonly used artificially cultivated organisms lack the diversity found in nature, so potentially critical community and environmental interactions go unsampled.

Raymond Orbach, director of DOE’s Office of Science, noted that this research offers a glimpse of what will be possible in the near future. "This work illustrates the power of the genome sequencing done at the Department of Energy’s Joint Genome Institute to contribute to understanding the microbiological communities living at contaminated sites," Orbach said. "Now scientists can investigate not only the ’community genome,’ but also the resulting ’community proteome’ for enzymes and pathways that can help clean up some of the worst environmental sites in the nation. This underscores the value of basic research carried out by the DOE Genomics: Genomes to Life program that can develop novel approaches and solutions to national challenges."

Hettich said their results would not have been possible without the collaboration with UC Berkeley, where Jill Banfield is an expert in natural microbial communities. Banfield, a professor in the Department of Environmental Science, Policy and Management, has studied this particular acid mine drainage community for several years. Meanwhile, ORNL boasts world-class mass spectrometry instrumentation and its researchers have demonstrated success in obtaining proteome information on simple microbial organisms grown in the laboratory. Working as a team, UC Berkeley and ORNL have struck it rich.

"Through this collaboration, Jill Banfield has been able to take her research up a quantum step by obtaining the first glimpse into the complex proteome dataset of this microbial community," Hettich said. "To do this, it was critical that we bring together researchers with expertise in biology and ecology of microbial communities, analytical technologies and bioinformatics."

Banfield and colleagues at UC Berkeley supplied the bacterial samples and characterized genome information while Hettich and Nathan VerBerkmoes, a post-doctoral student in ORNL’s Chemical Sciences Division, performed the mass spectrometry work. Manesh Shah of ORNL’s Life Sciences Division was responsible for the informatics related to database searching and data dissemination. The team detected 2,036 proteins from the five most abundant species in the bio-film, including 48 percent of the predicted proteins from the most abundant bio-film organism, Leptosprillum group II.

Researchers noted that this work represents the first large-scale proteomics-level examination of a natural microbial community.

"As such, we are really among the leaders in this area, as evidenced by the strong interest in Science," Hettich said. "This is an area in which there is keen interest by many research groups; however, our team has been the most successful in obtaining detailed information from actual measurements."

Of particular interest to DOE is how this effort relates to its Genomes to Life program, which is focused on identifying and characterizing protein complexes, the molecular machines of life.

"Most of the current work looks at single microbial organisms grown under controlled laboratory conditions, but the longer-term plans are to extend this work to real-world microbial communities -- the natural state of these systems in the environment," Hettich said. "This goal is particularly difficult to reach due to the complexity and heterogeneity of the communities.

"However, the acid mine drainage microbial colony is an excellent starting point because it is a real-life natural world community with a limited number of members. Thus, we can measure and learn about microbial interactions and function distribution in a natural setting without being overwhelmed by an extremely large number of organisms."

The research team acknowledges that, although this study provides interesting details of microbial community structure and function, a great deal of work remains to more fully explore the spatial and temporal aspects of how such a community grows, ages and adapts to its environment.

Funding for this research was provided by DOE’s Office of Science, Office of Biological and Environmental Research, and by the National Science Foundation. Oak Ridge National Laboratory is managed for DOE by UT-Battelle.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>