Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL, UC Berkeley unravel real-world clues to Earth’s mysteries

09.05.2005


A microbial community thriving under bizarre natural conditions in California could be a gold mine to researchers in their quest to understand the complex biological relationships and how these inner workings might apply on a grander scale.



In a paper to appear today on Science Online, researchers from the Department of Energy’s Oak Ridge National Laboratory and the University of California Berkeley describe a bacterial community that flourishes in the iron sulfide-rich runoff of the Richmond Mine near Redding. A pH level of 7 is considered neutral and most proteins prefer pH levels between 5 and 7. The water trickling from the mine has a pH of about 0.8 and a temperature of 107 degrees Fahrenheit.

"This microbial community is thriving at the extreme edge," said Bob Hettich, a co-author and member of ORNL’s Chemical Sciences Division. "A pH level of 0.8 is like swimming in sulfuric acid, so we’d like to know how this community can survive and how we might be able to use this information to better understand microbial systems in real-world conditions."


The work is significant on a number of levels, according to the research team, which noted that while microbial communities play key roles in the Earth’s bio-geochemical cycles, scientists know little about the structure and activities within these communities. This is because the commonly used artificially cultivated organisms lack the diversity found in nature, so potentially critical community and environmental interactions go unsampled.

Raymond Orbach, director of DOE’s Office of Science, noted that this research offers a glimpse of what will be possible in the near future. "This work illustrates the power of the genome sequencing done at the Department of Energy’s Joint Genome Institute to contribute to understanding the microbiological communities living at contaminated sites," Orbach said. "Now scientists can investigate not only the ’community genome,’ but also the resulting ’community proteome’ for enzymes and pathways that can help clean up some of the worst environmental sites in the nation. This underscores the value of basic research carried out by the DOE Genomics: Genomes to Life program that can develop novel approaches and solutions to national challenges."

Hettich said their results would not have been possible without the collaboration with UC Berkeley, where Jill Banfield is an expert in natural microbial communities. Banfield, a professor in the Department of Environmental Science, Policy and Management, has studied this particular acid mine drainage community for several years. Meanwhile, ORNL boasts world-class mass spectrometry instrumentation and its researchers have demonstrated success in obtaining proteome information on simple microbial organisms grown in the laboratory. Working as a team, UC Berkeley and ORNL have struck it rich.

"Through this collaboration, Jill Banfield has been able to take her research up a quantum step by obtaining the first glimpse into the complex proteome dataset of this microbial community," Hettich said. "To do this, it was critical that we bring together researchers with expertise in biology and ecology of microbial communities, analytical technologies and bioinformatics."

Banfield and colleagues at UC Berkeley supplied the bacterial samples and characterized genome information while Hettich and Nathan VerBerkmoes, a post-doctoral student in ORNL’s Chemical Sciences Division, performed the mass spectrometry work. Manesh Shah of ORNL’s Life Sciences Division was responsible for the informatics related to database searching and data dissemination. The team detected 2,036 proteins from the five most abundant species in the bio-film, including 48 percent of the predicted proteins from the most abundant bio-film organism, Leptosprillum group II.

Researchers noted that this work represents the first large-scale proteomics-level examination of a natural microbial community.

"As such, we are really among the leaders in this area, as evidenced by the strong interest in Science," Hettich said. "This is an area in which there is keen interest by many research groups; however, our team has been the most successful in obtaining detailed information from actual measurements."

Of particular interest to DOE is how this effort relates to its Genomes to Life program, which is focused on identifying and characterizing protein complexes, the molecular machines of life.

"Most of the current work looks at single microbial organisms grown under controlled laboratory conditions, but the longer-term plans are to extend this work to real-world microbial communities -- the natural state of these systems in the environment," Hettich said. "This goal is particularly difficult to reach due to the complexity and heterogeneity of the communities.

"However, the acid mine drainage microbial colony is an excellent starting point because it is a real-life natural world community with a limited number of members. Thus, we can measure and learn about microbial interactions and function distribution in a natural setting without being overwhelmed by an extremely large number of organisms."

The research team acknowledges that, although this study provides interesting details of microbial community structure and function, a great deal of work remains to more fully explore the spatial and temporal aspects of how such a community grows, ages and adapts to its environment.

Funding for this research was provided by DOE’s Office of Science, Office of Biological and Environmental Research, and by the National Science Foundation. Oak Ridge National Laboratory is managed for DOE by UT-Battelle.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Earth Sciences:

nachricht Better model of water under extreme conditions could aid understanding of Earth's mantle
21.06.2018 | University of Chicago

nachricht The Janus head of the South Asian monsoon
21.06.2018 | Max-Planck-Institut für Chemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>