Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth’s reflectivity a great unknown in gauging climate change impacts

06.05.2005


Earth’s climate is being changed substantially by a buildup of atmospheric greenhouse gases, but a group of leading climate scientists contends the overall impact is not understood as well as it should be because data are too scarce on how much energy the planet reflects into space.



Reflectivity, or albedo, is largely governed by clouds and atmospheric particles called aerosols, but it is one of Earth’s least-understood properties, said Robert Charlson, a University of Washington atmospheric scientist. Yet research aimed at quantifying the effects of albedo and helping scientists understand how it could affect future climate change has been delayed or shelved altogether.

"The attention being paid to the greenhouse effect is warranted. But the changes to the energy budget of this planet don’t just involve the enhanced greenhouse effect. They also involve aerosols and clouds," Charlson said. "If we don’t understand the albedo-related effects, that is aerosols and clouds, then we can’t understand the effects of greenhouse gases."


The Earth’s albedo was first measured in the 1920s by astronomers who monitored "Earthshine" on the dark side of the moon and made comparisons to the sunlit side of the moon. But methods to measure albedo have varied greatly, as has confidence in the accuracy of the results. That means albedo still is "the big unknown" in climate research, Charlson said, though it makes up half the equation for understanding the planet’s energy budget. Charlson is lead author of a Perspectives article in the May 7 edition of the journal Science that calls for restoration of albedo research projects. Co-authors are Francisco P.J. Valero at the Scripps Institution of Oceanography at the University of California, San Diego, and John H. Seinfeld at the California Institute of Technology division of chemistry and chemical engineering.

Valero is the lead scientist on a project called Deep Space Climate Observatory, designed to place a satellite in orbit around the sun about 1 million miles from Earth. At that point, the planet’s gravitational pull on the satellite and the sun’s combine to allow the satellite to orbit the sun in the same time as Earth does, and thus have its advanced albedo sensors aimed at Earth’s sunlit side all the time. That satellite was to have been launched aboard the space shuttle by December 2000 but is awaiting a new launch date.

Two other satellites designed to study different aspects of clouds and aerosols, including a project in which Charlson has been centrally involved, have been built and have been scheduled for launch. However, recent budget cuts within the National Aeronautics and Space Administration will greatly limit the analysis and interpretation of the data they collect, the authors contend. Budget cuts also have affected the Earth Radiation Budget Satellite, leaving unanalyzed a large share of data it collected between 2000 and 2004, they said.

These are not small issues, Charlson said. Scientists understand to within 10 percent the impact of human activity on the production of greenhouse gases such as carbon dioxide and methane, he said, but the understanding of human impact on the planet’s reflectivity could be off by as much as 100 percent.

Some people have argued that a buildup of atmospheric aerosols that reflect heat away from Earth is a welcome development that will help offset greenhouse warming. But Charlson called that "a spurious argument, a red herring." "The greenhouse gases work 24 hours a day," he said. "They are out there, all over the world, changing the energy budget of the planet all day and all night, every day. Albedo is only active during the day."

He noted that greenhouse gases can stay in the atmosphere for centuries even if no more are added, but aerosols last only about a week after they are emitted. "There is no simplistic balance between these two effects," Charlson said. "It isn’t heating versus cooling. It’s scientific understanding versus not understanding."

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>