Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth’s reflectivity a great unknown in gauging climate change impacts

06.05.2005


Earth’s climate is being changed substantially by a buildup of atmospheric greenhouse gases, but a group of leading climate scientists contends the overall impact is not understood as well as it should be because data are too scarce on how much energy the planet reflects into space.



Reflectivity, or albedo, is largely governed by clouds and atmospheric particles called aerosols, but it is one of Earth’s least-understood properties, said Robert Charlson, a University of Washington atmospheric scientist. Yet research aimed at quantifying the effects of albedo and helping scientists understand how it could affect future climate change has been delayed or shelved altogether.

"The attention being paid to the greenhouse effect is warranted. But the changes to the energy budget of this planet don’t just involve the enhanced greenhouse effect. They also involve aerosols and clouds," Charlson said. "If we don’t understand the albedo-related effects, that is aerosols and clouds, then we can’t understand the effects of greenhouse gases."


The Earth’s albedo was first measured in the 1920s by astronomers who monitored "Earthshine" on the dark side of the moon and made comparisons to the sunlit side of the moon. But methods to measure albedo have varied greatly, as has confidence in the accuracy of the results. That means albedo still is "the big unknown" in climate research, Charlson said, though it makes up half the equation for understanding the planet’s energy budget. Charlson is lead author of a Perspectives article in the May 7 edition of the journal Science that calls for restoration of albedo research projects. Co-authors are Francisco P.J. Valero at the Scripps Institution of Oceanography at the University of California, San Diego, and John H. Seinfeld at the California Institute of Technology division of chemistry and chemical engineering.

Valero is the lead scientist on a project called Deep Space Climate Observatory, designed to place a satellite in orbit around the sun about 1 million miles from Earth. At that point, the planet’s gravitational pull on the satellite and the sun’s combine to allow the satellite to orbit the sun in the same time as Earth does, and thus have its advanced albedo sensors aimed at Earth’s sunlit side all the time. That satellite was to have been launched aboard the space shuttle by December 2000 but is awaiting a new launch date.

Two other satellites designed to study different aspects of clouds and aerosols, including a project in which Charlson has been centrally involved, have been built and have been scheduled for launch. However, recent budget cuts within the National Aeronautics and Space Administration will greatly limit the analysis and interpretation of the data they collect, the authors contend. Budget cuts also have affected the Earth Radiation Budget Satellite, leaving unanalyzed a large share of data it collected between 2000 and 2004, they said.

These are not small issues, Charlson said. Scientists understand to within 10 percent the impact of human activity on the production of greenhouse gases such as carbon dioxide and methane, he said, but the understanding of human impact on the planet’s reflectivity could be off by as much as 100 percent.

Some people have argued that a buildup of atmospheric aerosols that reflect heat away from Earth is a welcome development that will help offset greenhouse warming. But Charlson called that "a spurious argument, a red herring." "The greenhouse gases work 24 hours a day," he said. "They are out there, all over the world, changing the energy budget of the planet all day and all night, every day. Albedo is only active during the day."

He noted that greenhouse gases can stay in the atmosphere for centuries even if no more are added, but aerosols last only about a week after they are emitted. "There is no simplistic balance between these two effects," Charlson said. "It isn’t heating versus cooling. It’s scientific understanding versus not understanding."

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>