Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New thermometer reveals wet conditions on earliest Earth

06.05.2005


Researchers at Rensselaer Polytechnic Institute and Australian National University have found new evidence that environmental conditions on early Earth, within 200 million years of solar system formation, were characterized by liquid-water oceans and continental crust similar to those of the present day. The researchers developed a new thermometer that made the discovery possible.



"Our data support recent theories that Earth began a pattern of crust formation, erosion, and sediment recycling as early in its evolution as 4.35 billion years ago, which contrasts with the hot, violent environment envisioned for our young planet by most researchers and opens up the possibility that life got a very early foothold," said E. Bruce Watson, Institute Professor of Science and professor of geochemistry at Rensselaer Polytechnic Institute.

According to Watson, the research provides important information and a new technique for making additional discoveries about the first eon of Earth’s history, the Hadean eon, a time period for which still little is known.


The research findings are reported in the May 6 issue of the journal Science in a paper titled "Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth."

Watson collaborated with co-author T. Mark Harrison, director of the Research School of Earth Sciences at Australian National University and professor of geochemistry at UCLA, on the research. The work was supported by the National Science Foundation (NSF), the Australian Research Council, and the NASA Astrobiology Institute.

Watson and Harrison developed a new thermometer that involves the measurement of the titanium content of zircon crystals to determine their crystallization temperature. Zircons are tiny crystals embedded in rock that are the oldest known materials on Earth. Zircons pre-date by 400 million years the oldest known rocks on Earth. These ancient crystals provide researchers with a window into the earliest history of the Earth and have been used to date the assembly and movement of continents and oceans.

"Zircons allow us to go further back in geologic time because they survive processes that rocks do not," said Watson. "Although they measure only a fraction of a millimeter in size, zircons hold a wealth of information about the very earliest history of Earth."

In Watson and Harrison’s work, zircons from the Jack Hills area of Western Australia ranging in age from 4.0 to 4.35 billion years were analyzed using the thermometer. The new temperature data supports the existence of wet, minimum-melting conditions within 200 million years of solar system formation, according to the researchers. In the Science paper, the researchers discuss how the thermometer provides clear distinction between zircons crystallized in the mantle, in granites, and during metamorphism, thereby providing consistent information about the conditions on Earth during the crystals’ formation.

Watson describes his research as "materials science of the Earth," because it involves designing and executing laboratory experiments at the high temperatures and pressures found in the Earth’s deep crust and upper mantle. He teaches undergraduate and graduate geology courses at Rensselaer, including Natural Sciences, Introduction to Geochemistry, and Earth Materials.

Tiffany Lohwater | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>