Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New thermometer reveals wet conditions on earliest Earth

06.05.2005


Researchers at Rensselaer Polytechnic Institute and Australian National University have found new evidence that environmental conditions on early Earth, within 200 million years of solar system formation, were characterized by liquid-water oceans and continental crust similar to those of the present day. The researchers developed a new thermometer that made the discovery possible.



"Our data support recent theories that Earth began a pattern of crust formation, erosion, and sediment recycling as early in its evolution as 4.35 billion years ago, which contrasts with the hot, violent environment envisioned for our young planet by most researchers and opens up the possibility that life got a very early foothold," said E. Bruce Watson, Institute Professor of Science and professor of geochemistry at Rensselaer Polytechnic Institute.

According to Watson, the research provides important information and a new technique for making additional discoveries about the first eon of Earth’s history, the Hadean eon, a time period for which still little is known.


The research findings are reported in the May 6 issue of the journal Science in a paper titled "Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth."

Watson collaborated with co-author T. Mark Harrison, director of the Research School of Earth Sciences at Australian National University and professor of geochemistry at UCLA, on the research. The work was supported by the National Science Foundation (NSF), the Australian Research Council, and the NASA Astrobiology Institute.

Watson and Harrison developed a new thermometer that involves the measurement of the titanium content of zircon crystals to determine their crystallization temperature. Zircons are tiny crystals embedded in rock that are the oldest known materials on Earth. Zircons pre-date by 400 million years the oldest known rocks on Earth. These ancient crystals provide researchers with a window into the earliest history of the Earth and have been used to date the assembly and movement of continents and oceans.

"Zircons allow us to go further back in geologic time because they survive processes that rocks do not," said Watson. "Although they measure only a fraction of a millimeter in size, zircons hold a wealth of information about the very earliest history of Earth."

In Watson and Harrison’s work, zircons from the Jack Hills area of Western Australia ranging in age from 4.0 to 4.35 billion years were analyzed using the thermometer. The new temperature data supports the existence of wet, minimum-melting conditions within 200 million years of solar system formation, according to the researchers. In the Science paper, the researchers discuss how the thermometer provides clear distinction between zircons crystallized in the mantle, in granites, and during metamorphism, thereby providing consistent information about the conditions on Earth during the crystals’ formation.

Watson describes his research as "materials science of the Earth," because it involves designing and executing laboratory experiments at the high temperatures and pressures found in the Earth’s deep crust and upper mantle. He teaches undergraduate and graduate geology courses at Rensselaer, including Natural Sciences, Introduction to Geochemistry, and Earth Materials.

Tiffany Lohwater | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>