Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New thermometer reveals wet conditions on earliest Earth

06.05.2005


Researchers at Rensselaer Polytechnic Institute and Australian National University have found new evidence that environmental conditions on early Earth, within 200 million years of solar system formation, were characterized by liquid-water oceans and continental crust similar to those of the present day. The researchers developed a new thermometer that made the discovery possible.



"Our data support recent theories that Earth began a pattern of crust formation, erosion, and sediment recycling as early in its evolution as 4.35 billion years ago, which contrasts with the hot, violent environment envisioned for our young planet by most researchers and opens up the possibility that life got a very early foothold," said E. Bruce Watson, Institute Professor of Science and professor of geochemistry at Rensselaer Polytechnic Institute.

According to Watson, the research provides important information and a new technique for making additional discoveries about the first eon of Earth’s history, the Hadean eon, a time period for which still little is known.


The research findings are reported in the May 6 issue of the journal Science in a paper titled "Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth."

Watson collaborated with co-author T. Mark Harrison, director of the Research School of Earth Sciences at Australian National University and professor of geochemistry at UCLA, on the research. The work was supported by the National Science Foundation (NSF), the Australian Research Council, and the NASA Astrobiology Institute.

Watson and Harrison developed a new thermometer that involves the measurement of the titanium content of zircon crystals to determine their crystallization temperature. Zircons are tiny crystals embedded in rock that are the oldest known materials on Earth. Zircons pre-date by 400 million years the oldest known rocks on Earth. These ancient crystals provide researchers with a window into the earliest history of the Earth and have been used to date the assembly and movement of continents and oceans.

"Zircons allow us to go further back in geologic time because they survive processes that rocks do not," said Watson. "Although they measure only a fraction of a millimeter in size, zircons hold a wealth of information about the very earliest history of Earth."

In Watson and Harrison’s work, zircons from the Jack Hills area of Western Australia ranging in age from 4.0 to 4.35 billion years were analyzed using the thermometer. The new temperature data supports the existence of wet, minimum-melting conditions within 200 million years of solar system formation, according to the researchers. In the Science paper, the researchers discuss how the thermometer provides clear distinction between zircons crystallized in the mantle, in granites, and during metamorphism, thereby providing consistent information about the conditions on Earth during the crystals’ formation.

Watson describes his research as "materials science of the Earth," because it involves designing and executing laboratory experiments at the high temperatures and pressures found in the Earth’s deep crust and upper mantle. He teaches undergraduate and graduate geology courses at Rensselaer, including Natural Sciences, Introduction to Geochemistry, and Earth Materials.

Tiffany Lohwater | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>