Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rock hounds sleuth rise of Earth’s atmosphere

04.05.2005


"CSI-like" techniques, used on minerals, are revealing the steps that led to evolution of the atmosphere on Earth. President of the Mineralogical Society of America, Douglas Rumble, III, of the Carnegie Institution’s Geophysical Laboratory, describes the suite of techniques and studies over the last five years that have led to a growing consensus by the scientific community of what happened to produce the protective ozone layer and atmosphere on our planet. His landmark paper on the subject appears in the May/June American Mineralogist.



"Rocks, fossils, and other natural relics hold clues to ancient environments in the form of different ratios of isotopes--atomic variants of elements with the same number of protons but different numbers of neutrons," explained Rumble. "Seawater, rain water, oxygen, and ozone, for instance, all have different ratios, or fingerprints, of the oxygen isotopes 16O, 17O, and 18O. Weathering, ground water, and direct deposition of atmospheric aerosols change the ratios of the isotopes in a rock revealing a lot about the past climate." Rumble’s paper describes how geochemists, mineralogists, and petrologists are studying anomalies of isotopes of oxygen and sulfur to piece together what happened to our atmosphere from about 3.9 billion years ago, when the crust of our planet was just forming and there was no oxygen in the atmosphere, to a primitive oxygenated world 2.3 billion years ago, and then to the present.

The detective work involves a pantheon of scientists who have analyzed surface minerals from all over the globe, used rockets and balloons to sample the stratosphere, collected and studied ice cores from Antarctica, conducted lab experiments, and run mathematical models. The synthesis from the different fields and techniques points to ultraviolet (UV) light from the Sun as an important driving force in atmospheric evolution. Solar UV photons break up molecular oxygen (O2) to produced ozone (O3) leaving a tell-tale isotopic signature of excess 17O. The ozone layer began to form as the atmosphere gained oxygen, and has since shielded our planet from harmful solar rays and made life possible on Earth’s surface.


The discovery of isotope anomalies, where none were previously suspected, adds a new tool to research on the relationships between shifts in atmospheric chemistry and climate change. Detailed studies of polar-ice cores and exposed deposits in Antarctic dry valleys may improve our understanding of the history of the ozone hole.

Douglas Rumble, III | EurekAlert!
Further information:
http://www.gl.ciw.edu

More articles from Earth Sciences:

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

nachricht New research unlocks forests' potential in climate change mitigation
21.04.2017 | Clemson University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>