Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gamma rays from thunderstorms?

03.05.2005


Duke University engineers have led the most detailed analyses of links between some lightning events and mysterious gamma ray emissions that emanate from earth’s own atmosphere. Their study suggests that this gamma radiation fountains upward from starting points surprisingly low in thunderclouds. Counter-intuitively, these strong gamma outbursts also seem to precede associated lightning discharges by a split second.

"All of this comes as a huge surprise," said Steven Cummer, an assistant professor of electrical and computer engineering at Duke’s Pratt School of Engineering. "These are higher energy gamma rays than come from the sun. And yet here they are coming from the kind of terrestrial thunderstorm that we see here all the time."

Cummer, Pratt School graduate student Wenyi Hu and postdoctoral researcher Yuhu Zhai described their analyses in a paper published online Saturday, April 30 in the journal Geophysical Research Letters. Other co-authors include David Smith of the University of California, Santa Cruz; Liliana Lopez of the University of California, Berkeley; and Mark Stanley of Los Alamos National Laboratory in New Mexico. The research was funded by the National Science Foundation.



Natural emissions of gamma rays, the most energetic forms of light, are usually triggered only by high-energy events in outer space. Such events include thermonuclear reactions within the sun, interactions between cosmic rays and black-hole-creating star collapses.

But in 1994, scientists using the Compton Gamma Ray Observatory satellite first detected gamma rays seemingly originating near the earth’s surface. And researchers quickly found evidence that those emissions were connected to lightning, Cummer said.

Beginning in 2002, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) satellite -- launched to study x-rays and gamma rays from the sun --also began detecting larger numbers of what scientists began terming terrestrial gamma ray flashes (TGFs).

Smith and Lopez were two of the four authors of a February 2005 paper in the journal Science that first described RHESSI-detected TGFs, and also corroborated those with lightning frequency data.

In the new Duke-led study, Cummer and his assistants made what he termed "very careful and continuous recordings" of lightning emissions in a targeted area over a four month period of 2004.

By analyzing those records, they identified lightning episodes they could link in time and place to TGFs recorded by RHESSI in the tropical Caribbean region. "We quantify the lightning-TGF relationship in detail and attempt to constrain the possible source mechanisms," the authors wrote in Geophysical Research Letters.

Cummer’s team analyzed data from two specialized instruments installed in Duke Forest, an outdoor research reserve near the university’s campuses. One of those devices performs sensitive long-range measurements of radio waves in the Very Low Frequency and Extremely Low Frequency bands -- from 50 to 30,000 and 3 to 3,000 hertz (cycles per second) respectively. The other instrument is sensitive to even lower frequencies, ranging from less than 0.1 to 400 hertz.

Cummer originally installed these radio wave detectors to perform long range studies tying Midwestern thunderstorms with the creation of ghostly, brief flashes in the upper atmosphere, known as "sprites."

"RHESSI didn’t detect any TGFs in the Midwestern U.S. where people detect sprites," Cummer said. "But there were a lot of TGFs in Indonesia, Africa and the American Caribbean area. Of those, the Caribbean is 2,000-4,000 kilometers from our sensors -- in the scale of things actually quite close. So we were able to say with very strong certainty whether lightning happened in the Caribbean at a specific time."

Their analysis raised major questions about how well the connection between lightning and gamma rays could be explained by a favored hypothesis known as "runaway breakdown," Cummer said.

Runaway breakdown begins with collisions between extraterrestrial cosmic rays and the atmosphere, which generates a few very high energy electrons. A sufficiently strong electric field can further accelerate these electrons. That can cause additional collisions, producing more high energy electrons until "the whole process avalanches," he said.

Such an electron avalanche in the electrical field immediately following a strong lightning discharge could create a high energy electron beam at altitudes of between 30 and 50 kilometers, according to the hypothesis. That beam would then produce gamma rays as it interacts with the atmosphere.

"If this were the operating mechanism, we should see enormous lightning strokes associated with every one of those TGFs," Cummer said. "But we found that this was unequivocally not the case."

Instead, the lightning strokes his group analyzed were 50-500 times smaller than what should be required to create TGFs by runaway breakdown, according to the Geophysical Research Letters report.

Their report suggested that runaway breakdown at a much lower altitude, created within "strong fields in or just above the thundercloud," could have triggered the TGFs instead. "It still almost certainly has to be runaway breakdown that’s creating these," Cummer said. "The only real possibility is that it’s much closer to the cloud top, and linked to something else happening inside the cloud."

The detailed Duke-led analysis also disclosed that, on average, TGFs occurred 1.24 milliseconds before their associated lightning strokes. "That was something we absolutely were not expecting," Cummer said. "But the coincidence between the lightning and the TGFs we found is too good to be random. So, even if the TGFs precede the lightning, they are in some way connected."

Their paper suggests one possibility for such a negative cause-and-effect relationship. Perhaps "TGFs are produced by a process associated with the development of the observed lightning stroke, but that actually occurs about 1 millisecond before the stroke itself," the authors wrote.

Cummer says his Duke group is now building cheaper and more portable versions of both kinds of low frequency radio detectors. He hopes to someday install those closer to satellite-observed TGF hot spots in the Caribbean region in order to make even more detailed observations.

"We now know where to go, because RHESSI has told us where these things happen," he said.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>