Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gamma rays from thunderstorms?

03.05.2005


Duke University engineers have led the most detailed analyses of links between some lightning events and mysterious gamma ray emissions that emanate from earth’s own atmosphere. Their study suggests that this gamma radiation fountains upward from starting points surprisingly low in thunderclouds. Counter-intuitively, these strong gamma outbursts also seem to precede associated lightning discharges by a split second.

"All of this comes as a huge surprise," said Steven Cummer, an assistant professor of electrical and computer engineering at Duke’s Pratt School of Engineering. "These are higher energy gamma rays than come from the sun. And yet here they are coming from the kind of terrestrial thunderstorm that we see here all the time."

Cummer, Pratt School graduate student Wenyi Hu and postdoctoral researcher Yuhu Zhai described their analyses in a paper published online Saturday, April 30 in the journal Geophysical Research Letters. Other co-authors include David Smith of the University of California, Santa Cruz; Liliana Lopez of the University of California, Berkeley; and Mark Stanley of Los Alamos National Laboratory in New Mexico. The research was funded by the National Science Foundation.



Natural emissions of gamma rays, the most energetic forms of light, are usually triggered only by high-energy events in outer space. Such events include thermonuclear reactions within the sun, interactions between cosmic rays and black-hole-creating star collapses.

But in 1994, scientists using the Compton Gamma Ray Observatory satellite first detected gamma rays seemingly originating near the earth’s surface. And researchers quickly found evidence that those emissions were connected to lightning, Cummer said.

Beginning in 2002, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) satellite -- launched to study x-rays and gamma rays from the sun --also began detecting larger numbers of what scientists began terming terrestrial gamma ray flashes (TGFs).

Smith and Lopez were two of the four authors of a February 2005 paper in the journal Science that first described RHESSI-detected TGFs, and also corroborated those with lightning frequency data.

In the new Duke-led study, Cummer and his assistants made what he termed "very careful and continuous recordings" of lightning emissions in a targeted area over a four month period of 2004.

By analyzing those records, they identified lightning episodes they could link in time and place to TGFs recorded by RHESSI in the tropical Caribbean region. "We quantify the lightning-TGF relationship in detail and attempt to constrain the possible source mechanisms," the authors wrote in Geophysical Research Letters.

Cummer’s team analyzed data from two specialized instruments installed in Duke Forest, an outdoor research reserve near the university’s campuses. One of those devices performs sensitive long-range measurements of radio waves in the Very Low Frequency and Extremely Low Frequency bands -- from 50 to 30,000 and 3 to 3,000 hertz (cycles per second) respectively. The other instrument is sensitive to even lower frequencies, ranging from less than 0.1 to 400 hertz.

Cummer originally installed these radio wave detectors to perform long range studies tying Midwestern thunderstorms with the creation of ghostly, brief flashes in the upper atmosphere, known as "sprites."

"RHESSI didn’t detect any TGFs in the Midwestern U.S. where people detect sprites," Cummer said. "But there were a lot of TGFs in Indonesia, Africa and the American Caribbean area. Of those, the Caribbean is 2,000-4,000 kilometers from our sensors -- in the scale of things actually quite close. So we were able to say with very strong certainty whether lightning happened in the Caribbean at a specific time."

Their analysis raised major questions about how well the connection between lightning and gamma rays could be explained by a favored hypothesis known as "runaway breakdown," Cummer said.

Runaway breakdown begins with collisions between extraterrestrial cosmic rays and the atmosphere, which generates a few very high energy electrons. A sufficiently strong electric field can further accelerate these electrons. That can cause additional collisions, producing more high energy electrons until "the whole process avalanches," he said.

Such an electron avalanche in the electrical field immediately following a strong lightning discharge could create a high energy electron beam at altitudes of between 30 and 50 kilometers, according to the hypothesis. That beam would then produce gamma rays as it interacts with the atmosphere.

"If this were the operating mechanism, we should see enormous lightning strokes associated with every one of those TGFs," Cummer said. "But we found that this was unequivocally not the case."

Instead, the lightning strokes his group analyzed were 50-500 times smaller than what should be required to create TGFs by runaway breakdown, according to the Geophysical Research Letters report.

Their report suggested that runaway breakdown at a much lower altitude, created within "strong fields in or just above the thundercloud," could have triggered the TGFs instead. "It still almost certainly has to be runaway breakdown that’s creating these," Cummer said. "The only real possibility is that it’s much closer to the cloud top, and linked to something else happening inside the cloud."

The detailed Duke-led analysis also disclosed that, on average, TGFs occurred 1.24 milliseconds before their associated lightning strokes. "That was something we absolutely were not expecting," Cummer said. "But the coincidence between the lightning and the TGFs we found is too good to be random. So, even if the TGFs precede the lightning, they are in some way connected."

Their paper suggests one possibility for such a negative cause-and-effect relationship. Perhaps "TGFs are produced by a process associated with the development of the observed lightning stroke, but that actually occurs about 1 millisecond before the stroke itself," the authors wrote.

Cummer says his Duke group is now building cheaper and more portable versions of both kinds of low frequency radio detectors. He hopes to someday install those closer to satellite-observed TGF hot spots in the Caribbean region in order to make even more detailed observations.

"We now know where to go, because RHESSI has told us where these things happen," he said.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>