Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Traces Of The Vitim Meteoroid

02.05.2005


In 2002-2003, three expeditions involving specialists of the Institutes of Geochemistry, of Solar-Terrestrial Geophysics, and of the Earth’s Crust, Siberian Branch, Russian Academy of Sciences (Irkutsk) looked for traces of meteoroid that had fallen down in the north-east of the Irkutsk Province, in the Mamsko-Chuisk region. None of the expeditions found either craters or meteoroid fragments. Only fallen trees and minor particles of meteorite substance mark the direction of celestial body falling.



At night of September 25, 2002, inhabitants of the Mamsko-Chuisk and Bodaibinsk regions (Irkutsk Province) watched the flight of a bright bolide. Although the weather was bad, a lot of people distinctly saw the surgeless white bright fluorescence flaming up in the south-west. It filled up all the sky and then moved from the valley of the Vitim River to the north-eastern direction. The fluorescence turned from white to blue and then to redly vinous. The flight of meteoroid was accompanied by hollow rumble and completed with a blow and shaking of the earth.

The rumble and rustling heard by multiple natives may be connected with occurrence of electric wave in the atmosphere. The variable electric field was so strong that in the apartment houses of Mama settlement, which were cut off power supply at that time, incandescent lamps began to shine dimly. Seismic stations of the Irkutsk Province recorded only feeble local shaking. Bright fluorescence at the altitude of 62 kilometers was recorded by a US satellite which tracked the fluorescence down to the 30 kilometer altitude. The satellite identified the altitude and position data of two points, based on which the Russian scientists managed to reconstruct the meteorite’s trajectory and sent several expeditions in search of it.


Nearby the lane, the researchers found a lot of broken and uprooted trees. No hurricanes took place there at that time, so the forest could be brought down only by the blast wave of meteoroid flying in the lower atmosphere. However, amplitude of the wave coming down from the altitude of 20 to 30 kilometers was unable to cause such damage. This contradiction has not been resolved by specialists yet.

The second Vitim expedition looked for cosmogeneous substance particles, which could be preserved in the snow covering tops of the hills in the area where the meteorite had fallen down. However, the researchers found only hollow spherules, their size normally not exceeding 100 to 200 mcm. Fragments of these fragile spherical components colored brown and deep-brown contain oxide and silicate minerals typical of meteorites, namely of chondrites. The researchers also found grains of nickel-containing pyrite and particles of ferriferous compounds. The spherules’ shape and peculiarities of their structure do not contradict the version that they could drop out of the dust ablative trace of meteoroid. Substances contained in the spherules can hardly be related to the rock substance in the Mamsko-Chuisk region. Since no fragments of the Vitim meteoroid have been found so far, these spherulesare are now the single probable evidence of its material composition.

Nevertheless, the researchers have not given up hopes for finding fragments of the Vitim meteoroid. Probably, the bulk of its fragments dropped out either farther along the trajectory (if the US satellite erroneously determined altitudes of two points in the falling route) or aside from the calculated path (if the two points’ position data was identified mistakenly).

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Earth Sciences:

nachricht Seabed mining could destroy ecosystems
23.01.2018 | University of Exeter

nachricht How climate change weakens coral 'immune systems'
23.01.2018 | Ohio State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>