Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Traces Of The Vitim Meteoroid

02.05.2005


In 2002-2003, three expeditions involving specialists of the Institutes of Geochemistry, of Solar-Terrestrial Geophysics, and of the Earth’s Crust, Siberian Branch, Russian Academy of Sciences (Irkutsk) looked for traces of meteoroid that had fallen down in the north-east of the Irkutsk Province, in the Mamsko-Chuisk region. None of the expeditions found either craters or meteoroid fragments. Only fallen trees and minor particles of meteorite substance mark the direction of celestial body falling.



At night of September 25, 2002, inhabitants of the Mamsko-Chuisk and Bodaibinsk regions (Irkutsk Province) watched the flight of a bright bolide. Although the weather was bad, a lot of people distinctly saw the surgeless white bright fluorescence flaming up in the south-west. It filled up all the sky and then moved from the valley of the Vitim River to the north-eastern direction. The fluorescence turned from white to blue and then to redly vinous. The flight of meteoroid was accompanied by hollow rumble and completed with a blow and shaking of the earth.

The rumble and rustling heard by multiple natives may be connected with occurrence of electric wave in the atmosphere. The variable electric field was so strong that in the apartment houses of Mama settlement, which were cut off power supply at that time, incandescent lamps began to shine dimly. Seismic stations of the Irkutsk Province recorded only feeble local shaking. Bright fluorescence at the altitude of 62 kilometers was recorded by a US satellite which tracked the fluorescence down to the 30 kilometer altitude. The satellite identified the altitude and position data of two points, based on which the Russian scientists managed to reconstruct the meteorite’s trajectory and sent several expeditions in search of it.


Nearby the lane, the researchers found a lot of broken and uprooted trees. No hurricanes took place there at that time, so the forest could be brought down only by the blast wave of meteoroid flying in the lower atmosphere. However, amplitude of the wave coming down from the altitude of 20 to 30 kilometers was unable to cause such damage. This contradiction has not been resolved by specialists yet.

The second Vitim expedition looked for cosmogeneous substance particles, which could be preserved in the snow covering tops of the hills in the area where the meteorite had fallen down. However, the researchers found only hollow spherules, their size normally not exceeding 100 to 200 mcm. Fragments of these fragile spherical components colored brown and deep-brown contain oxide and silicate minerals typical of meteorites, namely of chondrites. The researchers also found grains of nickel-containing pyrite and particles of ferriferous compounds. The spherules’ shape and peculiarities of their structure do not contradict the version that they could drop out of the dust ablative trace of meteoroid. Substances contained in the spherules can hardly be related to the rock substance in the Mamsko-Chuisk region. Since no fragments of the Vitim meteoroid have been found so far, these spherulesare are now the single probable evidence of its material composition.

Nevertheless, the researchers have not given up hopes for finding fragments of the Vitim meteoroid. Probably, the bulk of its fragments dropped out either farther along the trajectory (if the US satellite erroneously determined altitudes of two points in the falling route) or aside from the calculated path (if the two points’ position data was identified mistakenly).

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>