Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers drill historic hole in Atlantic Ocean floor

29.04.2005


Researchers from the Integrated Ocean Drilling Program (IODP) have drilled into sections of the Earth’s crust for the first time ever, and their findings could provide new insights about how Earth was formed.



Scientists aboard the research vessel JOIDES Resolution, of which Texas A&M University serves as the chief contractor, took almost three months to drill the hole, which penetrates more than 4,600 feet below the ocean floor. It is in an area called the Atlantis Massif located in the middle of the Atlantic Ocean, says Jay Miller, staff scientist at Texas A&M and one of the leaders of the project.

The new hole - the third deepest ever drilled in the "basement" area of the oceanic crust - has provided more than 3,000 feet of core samples that researchers will examine over the next three to four years, Miller said. It could provide key data on how ocean crust and other layers form, and the research may yield new perspectives on how the ocean crust was formed and has evolved through time.


"What we know about how the interior of the Earth evolved is based primarily on geophysical data," Miller explains.

"The samples we’ve collected lead us to believe that we’ve oversimplified some features. We know now that each time we drill a hole, we learn the structure of the Earth is much more complex than we had thought. Much of this drilling work is changing our understanding of how the Earth developed."

Drilling during the expedition, which was completed in early March, lasted 24 hours a day through solid rock, Miller said. Research teams from IODP’s members (the United States, Japan, China and the European Consortium for Ocean Research) involved 18 different countries.

Miller said the core samples will be analyzed and additional drilling could be possible. "The area where we were is sort of a mountain on the ocean floor," he explains. "The data from where we drilled also need to be studied thoroughly so we can develop a model to work from. This could provide us with a window to parts of the oceanic crust we’ve never seen. "From these samples, we hope to assemble pictures and data of what the entire ocean crust looks like. This hole we’ve drilled is just one part of the big puzzle below the ocean floor."

Miller said the 4,600-foot hole "is still there, open and in good condition. We could return to it at any time in the future and deepen it."

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Earth Sciences:

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

nachricht WSU researchers document one of planet's largest volcanic eruptions
12.10.2017 | Washington State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>