Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers drill historic hole in Atlantic Ocean floor

29.04.2005


Researchers from the Integrated Ocean Drilling Program (IODP) have drilled into sections of the Earth’s crust for the first time ever, and their findings could provide new insights about how Earth was formed.



Scientists aboard the research vessel JOIDES Resolution, of which Texas A&M University serves as the chief contractor, took almost three months to drill the hole, which penetrates more than 4,600 feet below the ocean floor. It is in an area called the Atlantis Massif located in the middle of the Atlantic Ocean, says Jay Miller, staff scientist at Texas A&M and one of the leaders of the project.

The new hole - the third deepest ever drilled in the "basement" area of the oceanic crust - has provided more than 3,000 feet of core samples that researchers will examine over the next three to four years, Miller said. It could provide key data on how ocean crust and other layers form, and the research may yield new perspectives on how the ocean crust was formed and has evolved through time.


"What we know about how the interior of the Earth evolved is based primarily on geophysical data," Miller explains.

"The samples we’ve collected lead us to believe that we’ve oversimplified some features. We know now that each time we drill a hole, we learn the structure of the Earth is much more complex than we had thought. Much of this drilling work is changing our understanding of how the Earth developed."

Drilling during the expedition, which was completed in early March, lasted 24 hours a day through solid rock, Miller said. Research teams from IODP’s members (the United States, Japan, China and the European Consortium for Ocean Research) involved 18 different countries.

Miller said the core samples will be analyzed and additional drilling could be possible. "The area where we were is sort of a mountain on the ocean floor," he explains. "The data from where we drilled also need to be studied thoroughly so we can develop a model to work from. This could provide us with a window to parts of the oceanic crust we’ve never seen. "From these samples, we hope to assemble pictures and data of what the entire ocean crust looks like. This hole we’ve drilled is just one part of the big puzzle below the ocean floor."

Miller said the 4,600-foot hole "is still there, open and in good condition. We could return to it at any time in the future and deepen it."

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>