Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologist Digs Deep - The Pito Deep, 6,000 Meters Beneath The Ocean

27.04.2005


Late last January, while most people were battling winter’s cold and snow, University of Illinois structural geologist



Stephen Hurst left for a monthlong cruise in the South Pacific. It was no vacation, though. Hurst joined a team of scientists, engineers and technicians who set sail from Easter Island to explore the Pito Deep, a rift in Earth’s crust nearly 6,000 meters deep.

Funded by the National Science Foundation, the expedition had as its goal to probe the ocean crust, and gain a better understanding of how it was created. "Pito Deep is one of the few locations where such investigations can be made," Hurst said. "The rift is on the boundary between the Easter Island microplate and the Nazca plate, in an area where tectonic movement is pulling the crust apart."


Unlike rifts caused by sea-floor spreading, at Pito Deep there is no fresh magma obscuring the chasm. As a result, the crust is exposed like a split watermelon. The naturally occurring cross-section offers scientists an opportunity to study the structure of the ocean crust and how it formed. Hurst rendezvoused with the rest of the scientific team on Easter Island. While awaiting final preparations, he had an opportunity to explore the quarry where most of the island’s famous stone heads, or Moai, were carved. "The quarry is spectacular," Hurst said. "There are approximately 300 Moai scattered throughout the quarry area, in various stages of completion. Some are 40 feet long. While the workmanship may not equal that of Michelangelo, the Moai are still very impressive."

When all was made ready, Hurst and the others boarded the Atlantis (host ship for the deep-sea submersible Alvin) and began the 24-hour cruise to Pito Deep, which is about 350 miles north and slightly east of Easter Island. Having participated in six similar cruises, Hurst was involved with many technical operations of the expedition, from preparing bathymetric maps to analyzing photographs to diving in Alvin.

The floor of Pito Deep lies about 1,500 meters deeper than Alvin can safely dive, but this was not a problem for the researchers. "The bottoms of these canyons are usually filled with sediment and debris from rockslides," Hurst said. "For our studies, we wanted to collect rocks from the steepest, not the deepest, part of the chasm." The descent takes nearly two hours. The pilot and two "observers" spend the time talking, listening to music or rechecking the equipment. "You can’t sit back and enjoy the view," Hurst said, "because there is no view. Sunlight doesn’t penetrate the ocean much past the first 100 meters, so for nearly the entire ride down it’s dark as night outside."

To conserve battery power, Alvin’s powerful floodlights are rarely used during the descent. Because of the cramped space and limited view, each prospective observer is tested for claustrophobia before being allowed on a dive. During the dive, the water temperature falls from about 80 degrees Fahrenheit at the surface to close to freezing at depth. Separating the sub’s occupants from the cold water is 2 inches of titanium hull, which also offers protection from the crushing pressure. "Because of the enormous pressures we experience, it’s not uncommon to find Alvin’s hull festooned with net bags filled with Styrofoam cups and mannequin heads at the beginning of a dive," Hurst said. "The water pressure squeezes them to a tiny fraction of their original size, making neat souvenirs of the dive."

The researchers have about five hours to explore the abyss and collect rock samples from the cliff face before Alvin’s power runs low and they must float to the surface. A veteran of 19 dives, Hurst said each dive is unique. "In addition to some spectacular outcrops, this time I saw a deep-water holothurian for the first time. A very unusual type of sea cucumber, the animal was deep purple, translucent, with a bright pink fluorescent patch and a fringe around the top that waved back and forth. The creature was peacefully swimming at a depth of 3,700 meters."

There was also a moment of consternation on one of his Pito Deep dives, when a pilot-in-training accidentally shut off Alvin’s power. "In an instant, all was dark and quiet," Hurst said. "Fortunately, the master pilot quickly restored power." Although data analysis will take many months, Hurst said the expedition’s preliminary results are positive. The researchers found the types of rocks they were looking for - rocks from the base of the ocean crust.

"We discovered that Pito Deep has a sort of layer cake geology," Hurst said. "Like frosting on a cake, the top layer consists of horizontal lava flows. Beneath that is a layer of vertical dikes - the conduits through which the lava flowed. Beneath that is the now solid magma chamber at the base of the ocean crust. And beneath that lies the mantle." It may be years before Alvin is scheduled to return to Pito Deep. But when it is, Hurst said he will be ready for another cruise to the South Pacific.

James E. Kloeppel | University of Illinois News Bure
Further information:
http://www.news.uiuc.edu/
http://www.uiuc.edu

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>