Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

San Fernando, Northridge quakes may be maximum

21.04.2005


A new study by researchers at Oregon State University suggests that the magnitude 6.7 earthquakes that struck California’s San Fernando Valley in 1971 and Northridge area in 1994 may have been about the most powerful quakes that this specific area can sustain. Results of the research were published this week in the journal Geology.



"The study points out the potential of using paleomagnetism to estimate maximum earthquake magnitudes in some regions," said Shaul Levi, a paleomagnetist and professor emeritus in OSU’s College of Oceanic and Atmospheric Sciences who was lead author of the study.

Co-authors were John Nabelek, a seismologist in the OSU College of Oceanic and Atmospheric Sciences, and professor emeritus Robert Yeats, from OSU’s Department of Geosciences.


"Other researchers in the Los Angeles area have shown that the region could be hit by an earthquake of magnitude 7.2 to 7.5," said Yeats, one of the West Coast’s leading earthquake geologists. "So the threat of smaller earthquakes in the area we studied should be welcome news to the area’s residents.

"Further east, there is potential for larger earthquake magnitudes along the San Andreas fault system, which is capable of sustaining an earthquake up to about magnitude 8," Yeats added.

A magnitude 7.2 earthquake is roughly five times more powerful than a 6.7 quake, so downgrading the maximum magnitude is significant.

Paleomagnetism was used to measure the magnetization of sediments, which recorded the directions of the Earth’s magnetic field when those sediments were originally deposited. From the magnetic orientations, the OSU scientists were able to discern that the crust in this area of rapidly expanding suburbs in northern Los Angeles County is broken up into blocks, rather than being a single piece of crust.

"From the size of the blocks, and data from the 1971 and 1994 earthquakes – which are the largest shocks recorded in this area – we calculated that the maximum earthquakes for the study area should be limited to magnitude of about 6.8," Levi said.

The OSU researchers originally set out to establish an accurate date for the Saugus Formation, which is widely distributed in north Los Angeles County, in the area bisected by Interstate 5. They found that the crust in this area had broken into four blocks, which are about 10 to 20 kilometers in length and width.

From the magnetic orientations, they concluded that the blocks at the Van Normal Lakes west of the city of San Fernando and at Soledad Canyon in the City of Santa Clarita had not rotated, while the block including the Magic Mountain amusement park rotated clockwise 30 degrees and another block farther east, north of the Foothill Freeway, recorded 34 degrees clockwise rotation.

This segmentation and block rotations are caused by stresses due to tectonic interactions between the colliding Pacific and North American plates. From the ages of the sediments and their paleomagnetic orientations, the researchers concluded that the blocks have acted independently for 800,000 years.

More detailed knowledge of the crustal structure will help disaster management planners make more informed decisions, the researchers say.

"When there aren’t enough data," Yeats said, "managers tend to prepare for the worst-case scenario in a general sense rather than what the worst case may be for a particular region. Even though our study area sustained two damaging earthquakes in recent decades, it is not expected to endure earthquakes as large as those anticipated to the east and west."

The paleomagnetic methods used in this study could be applied to other areas to better assess the maximum potential for earthquakes. But, Levi warned, this technique depends on the availability of well-dated rocks of similar ages that have stable magnetization, suitable for paleomagnetism.

Shaul Levi | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Earth Sciences:

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>