Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

San Fernando, Northridge quakes may be maximum

21.04.2005


A new study by researchers at Oregon State University suggests that the magnitude 6.7 earthquakes that struck California’s San Fernando Valley in 1971 and Northridge area in 1994 may have been about the most powerful quakes that this specific area can sustain. Results of the research were published this week in the journal Geology.



"The study points out the potential of using paleomagnetism to estimate maximum earthquake magnitudes in some regions," said Shaul Levi, a paleomagnetist and professor emeritus in OSU’s College of Oceanic and Atmospheric Sciences who was lead author of the study.

Co-authors were John Nabelek, a seismologist in the OSU College of Oceanic and Atmospheric Sciences, and professor emeritus Robert Yeats, from OSU’s Department of Geosciences.


"Other researchers in the Los Angeles area have shown that the region could be hit by an earthquake of magnitude 7.2 to 7.5," said Yeats, one of the West Coast’s leading earthquake geologists. "So the threat of smaller earthquakes in the area we studied should be welcome news to the area’s residents.

"Further east, there is potential for larger earthquake magnitudes along the San Andreas fault system, which is capable of sustaining an earthquake up to about magnitude 8," Yeats added.

A magnitude 7.2 earthquake is roughly five times more powerful than a 6.7 quake, so downgrading the maximum magnitude is significant.

Paleomagnetism was used to measure the magnetization of sediments, which recorded the directions of the Earth’s magnetic field when those sediments were originally deposited. From the magnetic orientations, the OSU scientists were able to discern that the crust in this area of rapidly expanding suburbs in northern Los Angeles County is broken up into blocks, rather than being a single piece of crust.

"From the size of the blocks, and data from the 1971 and 1994 earthquakes – which are the largest shocks recorded in this area – we calculated that the maximum earthquakes for the study area should be limited to magnitude of about 6.8," Levi said.

The OSU researchers originally set out to establish an accurate date for the Saugus Formation, which is widely distributed in north Los Angeles County, in the area bisected by Interstate 5. They found that the crust in this area had broken into four blocks, which are about 10 to 20 kilometers in length and width.

From the magnetic orientations, they concluded that the blocks at the Van Normal Lakes west of the city of San Fernando and at Soledad Canyon in the City of Santa Clarita had not rotated, while the block including the Magic Mountain amusement park rotated clockwise 30 degrees and another block farther east, north of the Foothill Freeway, recorded 34 degrees clockwise rotation.

This segmentation and block rotations are caused by stresses due to tectonic interactions between the colliding Pacific and North American plates. From the ages of the sediments and their paleomagnetic orientations, the researchers concluded that the blocks have acted independently for 800,000 years.

More detailed knowledge of the crustal structure will help disaster management planners make more informed decisions, the researchers say.

"When there aren’t enough data," Yeats said, "managers tend to prepare for the worst-case scenario in a general sense rather than what the worst case may be for a particular region. Even though our study area sustained two damaging earthquakes in recent decades, it is not expected to endure earthquakes as large as those anticipated to the east and west."

The paleomagnetic methods used in this study could be applied to other areas to better assess the maximum potential for earthquakes. But, Levi warned, this technique depends on the availability of well-dated rocks of similar ages that have stable magnetization, suitable for paleomagnetism.

Shaul Levi | EurekAlert!
Further information:
http://www.oregonstate.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>