Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists find a new active fault in Nepal

21.04.2005


Potentially links climate with mountain building



A Dartmouth researcher is part of a team that has discovered a new active "thrust fault" at the base of the Himalaya in Nepal. This new fault likely accommodates some of the subterranean pressure caused by the continuing collision of the Indian subcontinent with Asia.

The study, titled "Active out-of-sequence thrust faulting in the central Nepalese Himalaya," will be published in the April 21 issue of the journal Nature.


"This work tackles one of the fundamental questions in my field," says Arjun Heimsath, Assistant Professor of Earth Sciences and an author on the paper. "We are trying to determine whether climate is driving erosion, which may in turn impact tectonics, or whether tectonic forces drive erosion that subsequently influences climate. It’s sometimes called the classic chicken-or-egg problem in geomorphology."

The researchers argue that this evidence quantifies a connection between erosion rates and tectonic forces, which might lead to a new understanding of how the growth of the Himalaya plays a role in global climate change. The new fault is found in an area where there is a dramatic change in the structure of the landscape, and it’s in a region where the rainfall and erosion rates are among the highest in the world.

Heimsath explains that as India continues to collide with Asia, the Himalayan Mountain Range grows a centimeter or more each year, and then the monsoons help bring about the erosion of the same mountains. The new active fault is at the base of the Great Himalaya in Central Nepal, about 60 miles from Kathmandu. Here, the landscape changes from low relief and gently sloping hills to steep, high mountains, and the researchers discovered that the erosion rates increase by a factor of four with the transition in topography.

"We used two different techniques of dating minerals in sediments to determine erosion rates spanning the last several thousand years as well as several million years," he says. "There was corroboration over drastically different time scales of erosion rates from several watersheds, suggesting a close connection between erosion and tectonics."

Heimsath and colleagues speculate that there may be some sort of feedback mechanism between erosion and tectonic movement, which might help reduce the potential energy accumulated by the uplift of the Himalaya and the formation of the Tibetan plateau, a vast region where the mean elevation is over 16,000 feet.

"The incredible mass of this uplifted plateau is struggling for someplace to go, and it’s possible that focused erosion processes, which remove material at a high rate along the base of the Himalaya, are enabling a reduction in this accumulated potential energy. It’s a continent-sized physics problem," he says.

Heimsath’s coauthors on this study are Cameron Wobus, Kelin Whipple and Kip Hodges, all in the Department of Earth, Atmospheric and Planetary Sciences at Massachusetts Institute of Technology. Wobus, a current PhD student, is a former graduate student at Dartmouth.

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>