Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists find a new active fault in Nepal

21.04.2005


Potentially links climate with mountain building



A Dartmouth researcher is part of a team that has discovered a new active "thrust fault" at the base of the Himalaya in Nepal. This new fault likely accommodates some of the subterranean pressure caused by the continuing collision of the Indian subcontinent with Asia.

The study, titled "Active out-of-sequence thrust faulting in the central Nepalese Himalaya," will be published in the April 21 issue of the journal Nature.


"This work tackles one of the fundamental questions in my field," says Arjun Heimsath, Assistant Professor of Earth Sciences and an author on the paper. "We are trying to determine whether climate is driving erosion, which may in turn impact tectonics, or whether tectonic forces drive erosion that subsequently influences climate. It’s sometimes called the classic chicken-or-egg problem in geomorphology."

The researchers argue that this evidence quantifies a connection between erosion rates and tectonic forces, which might lead to a new understanding of how the growth of the Himalaya plays a role in global climate change. The new fault is found in an area where there is a dramatic change in the structure of the landscape, and it’s in a region where the rainfall and erosion rates are among the highest in the world.

Heimsath explains that as India continues to collide with Asia, the Himalayan Mountain Range grows a centimeter or more each year, and then the monsoons help bring about the erosion of the same mountains. The new active fault is at the base of the Great Himalaya in Central Nepal, about 60 miles from Kathmandu. Here, the landscape changes from low relief and gently sloping hills to steep, high mountains, and the researchers discovered that the erosion rates increase by a factor of four with the transition in topography.

"We used two different techniques of dating minerals in sediments to determine erosion rates spanning the last several thousand years as well as several million years," he says. "There was corroboration over drastically different time scales of erosion rates from several watersheds, suggesting a close connection between erosion and tectonics."

Heimsath and colleagues speculate that there may be some sort of feedback mechanism between erosion and tectonic movement, which might help reduce the potential energy accumulated by the uplift of the Himalaya and the formation of the Tibetan plateau, a vast region where the mean elevation is over 16,000 feet.

"The incredible mass of this uplifted plateau is struggling for someplace to go, and it’s possible that focused erosion processes, which remove material at a high rate along the base of the Himalaya, are enabling a reduction in this accumulated potential energy. It’s a continent-sized physics problem," he says.

Heimsath’s coauthors on this study are Cameron Wobus, Kelin Whipple and Kip Hodges, all in the Department of Earth, Atmospheric and Planetary Sciences at Massachusetts Institute of Technology. Wobus, a current PhD student, is a former graduate student at Dartmouth.

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

Innovative autonomous system for identifying schools of fish

20.06.2018 | Information Technology

Controlling robots with brainwaves and hand gestures

20.06.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>